Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình thì bạn tự vẽ nha!
Trên cạnh AD lấy điểm M sao cho AM=AB vì AB<AD(gt) => AM< AD => M nằm giữa A,D
Bạn chứng minh tam giác ABC và tam giác AMC theo trường hợp góc cạnh góc rồi suy ra
CM=BC, gABC=gAMC(1). Tứ giác ABCD có góc A+gB+gC+gD=360 độ mà gA+gC=180
=> gB+gD=180 độ(2). Từ (1),(2)=> gD+gAMC=180 độ
gAMC+gDMC=180 độ ( 2 góc kề bù)
=> gD=gDMC=> tam giác DMC cân tại C
Mạt khác DC=MC, MC=BC=> DC=BC(đpcm)
Answer:
A) Ta có: AD // BC
\(\Rightarrow\widehat{ABC}+\widehat{BAD}=180^o\) (Hai góc trong cùng phía bù nhau)
\(\Rightarrow60^o+\widehat{BAD}=180^o\)
\(\Rightarrow\widehat{BAD}=120^o\)
\(\Rightarrow\widehat{BAC}+\widehat{DAC}=120^o\)
\(\Rightarrow\widehat{DAC}=30^o\)
B) Xét tam giác DAC có: DA = DC => Tam giác DAC cân tại D
\(\Rightarrow\widehat{DCA}=\widehat{DAC}=30^o\)
\(\Rightarrow\widehat{DCB}=\widehat{DCA}+\widehat{ACB}=60^o=\widehat{ABC}\)
Tứ giác ABCD có:
AD // BC (giả thiết)
Hai góc kề đáy CD bằng nhau
=> ABCD là hình thang cân
C) Theo phần b): ABCD là hình thang cân
=> AB = CD mà AD = CD (giả thiết)
=> AB = AD
Tam giác ABC vuông tại A có AB là cạnh đối diện \(\widehat{BCA}=30^o\)
=> AB = BC : 2 = BE = EC
Mà ta có: AB = AD => AD = BE
Tứ giác ADEB có:
AD // BE
AD = BE
=> Nên là hình bình hành
Ta có: AD = AB => ADEB là hình thoi
D E B A C
Trên cạnh AD lấy điểm E sao cho AE=AB .
Xét \(\Delta ABC\)và \(\Delta AEC\)có :
\(AB=AE\)(GT)
\(\widehat{A}_1=\widehat{A}_2\)(vì AC là tia phân giác góc BAD )
\(AC:\)Cạnh chung
Do đó : tam giác ABC = tam giác AEC (c-g-c)
\(\Rightarrow BC=CE\)( cặp cạnh tương ứng ) (1)
\(\widehat{B}_1=\widehat{E}_1\)( cặp góc tương ứng )
Vì tứ giác ABCD có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{C}=360^o\)( tính chất tứ giác lồi )
Mà \(\widehat{A}+\widehat{C}=180^o\)( GT)
\(\Rightarrow\widehat{B}+\widehat{D}=180^o\)
Mà \(\widehat{B}_1=\widehat{E}_1\)
\(\widehat{E}_2+\widehat{E}_1=180^o\)
\(\Rightarrow\widehat{E}_2=\widehat{D}\)
\(\Rightarrow\Delta CDE\)cân tại C .
\(\Rightarrow DC=CE\)(2)
Từ (1) và (2)
\(\hept{\begin{cases}BC=CE\\DC=CE\end{cases}}\)
\(\Rightarrow DC=BC\left(dpcm\right)\)