Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
a, Câu hỏi của Quỳnh Anh Shuy - Toán lớp 8 | Học trực tuyến
b, Câu hỏi của Quỳnh Anh Shuy - Toán lớp 8 | Học trực tuyến
Bài 10* Sách bài tập - trang 80 - Toán lớp 8 | Học trực tuyến
Câu hỏi của Đào Hâm - Toán lớp 8 | Học trực tuyến
Good luck!
Bài 1: Có P(ABCD) = AB + BC + CD + DA = 66
P(ABC) = AB + BC + CA = 56
P(ACD) = AC + CD + DA = 60
=> P (ABC) + P(ACD) = (AB + BC + CD + DA) + 2.AC = 66 + 2.AC = 56 + 60 = 116
=> 2.AC = 116 - 66 = 50 => AC = 50 : 2 = 25
Câu này dễ mà.Mình học lớp 7 mà mình còn biết nữa đó.Chắc bạn thắc mắc là vì sao mình học lớp 7 mà mình biết bài lớp 8 đúng không.Tại vì mình có thi học sinh giỏi và đạt giải nhì vòng trường lớp 6 luôn đấy,thấy mình giỏi không.
Hi vọng bạn có kiến thức vững về BĐT tam giác nha, mấy bài này toàn BĐT tam giác thoi, mình ko chứng minh lại đâu.
Bài 3:
a) Xét tam giác AOB: \(OB>AB-AO\)
Xét tam giác DOC: \(OD>DC-OC\)
Cộng vế theo vế: \(OB+OD>AB+DC-\left(AO+OC\right)\Leftrightarrow BD>AB+DC-AC\Leftrightarrow BD+AC>AB+DC\)
b) Hoàn toàn tương tự với 2 tam giác AOD và BOC:
\(\Rightarrow\hept{\begin{cases}OD>AD-AO\\OB>BC-OC\end{cases}\Rightarrow BD>AD+BC-AC\Leftrightarrow BD+AC>AD+BC}\)
Bài 4:
a) Từ câu 3 ta có \(\hept{\begin{cases}BD+AC>AB+CD\\BD+AC>AD+BC\end{cases}}\)Cộng vế theo vế:
\(\Rightarrow2\left(BD+AC\right)>AB+BC+CD+DA=P_{ABCD}\Rightarrow BD+AC>\frac{P_{ABCD}}{2}\)
b) Câu này thực ra không cần đề cho trước \(AC< \frac{P_{ABCD}}{2}\)đâu, vì đây là điều hiển nhiên mà
Xét 2 tam giác ABC và ADC: \(\hept{\begin{cases}AC< AB+BC\\AC< AD+DC\end{cases}}\)cộng vế theo vế:
\(\Rightarrow2AC< AB+BC+CD+DA=P_{ABCD}\Rightarrow AC< \frac{P_{ABCD}}{2}\)(1)
Hoàn toàn tương tự với 2 tam giác ABD và CBD \(\Rightarrow BD< \frac{P_{ABCD}}{2}\)(2)
Cộng (1) và (2) vế theo vế: \(AC+BD< P_{ABCD}\)
Bạn ơi câu đàu tiên phải là "của tứ giác ABCD" nhé, mình đánh máy nhầm.
Mà bạn là VIP bias T.O.P đúng hơm,y chang mình. Kết bạn nhoa~
Gọi O là giao điểm 2 đường chéo AC và BD cảu tứ giác ABCD.
Xét tam giác AOB, theo bất đẳng thúc tam giác, ta có: AB<OA+OB
Xét tam giác COD, theo bất đẳng thức tam giác, ta có: CD<OC+OD
Suy ra: AB+CD<OA+OB+OC+OD
hay AB+CD<AC+BD (1)
Ta lại có: AB+BD+AD=<AC+CD+AD
\(\Rightarrow\) AB+BD=<AC+CD
\(\Rightarrow\) AB-CD=<AC-BD (2)
Từ (1) và (2), suy ra: 2AB<2AC (cộng vế theo vế)
\(\Rightarrow\) AB<AC (đpcm)
Đảm bảo chính xác 100%
Độ tin cậy không cần bàn cãi.