K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Hướng dẫn.

(h.3.21)

a)

=> AB ⊥ CD.
b)

Suy ra

Ta có => AB ⊥ MN.

Chứng minh tương tự được CD ⊥ MN.


 

NV
15 tháng 2 2020

\(\left\{{}\begin{matrix}\widehat{BAC}=60^0\\AB=AC\end{matrix}\right.\) \(\Rightarrow\Delta ABC\) đều \(\Rightarrow AB=BC\)

Tương tự ta có \(\Delta ABD\) đều \(\Rightarrow BD=AB=BC\)

\(\Rightarrow\Delta ACD=\Delta BCD\left(c.c.c\right)\)

\(\Rightarrow AJ=BJ\) (cùng là trung tuyến của 2 tam giác bằng nhau)

\(\Rightarrow\Delta ABJ\) cân tại J

\(\Rightarrow IJ\perp AB\)

Dữ kiện \(\widehat{CAD}=90^0\) là ko cần thiết

P/s: quên vẽ hình

15 tháng 2 2020

Thế còn đáp án?

12 tháng 5 2018

Chọn D.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

8 tháng 4 2019

Các tam giác ABC và ABD là tam giác đều ⇒ tam giác ACD cân

⇒ BN ⊥ CD và AN ⊥ CD ⇒ góc ANB là góc của hai mặt phẳng (ACD) và (BCD)

Đáp án B

15 tháng 12 2019

ĐÁP ÁN: A

10 tháng 5 2017

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 2)

- Gọi M, N lần lượt là trung điểm AC, BC.

+) Tam giác ACD có MJ là đường trung bình của tam giác nên :

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 2)

+) Tam giác BCD có NI là đường trung bình của tam giác nên:

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 2)

   Tương tự, ta có: Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 2)

   Mà theo giả thiết: AB = CD = a (4)

   Từ (1), (2), (3) và (4) suy ra:

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 2)

   Do đó, tứ giác MJNI là hình thoi ( tính chất hình thoi).

- Gọi O là giao điểm của MN và IJ, ta có:

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 2)

- Xét ΔMIO vuông tại O, ta có:

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 2)

4 tháng 5 2017

Ta có:  A B → . C D → = A B → A D → − A C → = A B → . A D → − A B → . A C →

= A B → . A D → . cos B A D − A B → . A C → cos B A C

= A B 2 . cos 60 ° − A B 2 cos 60 ° (do AB = AC = AD và B A C ^ = B A D ^ = 60 ° )

= 0

Suy ra A B ⊥ C D  hay góc giữa hai vecto A B → và C D → là 90 ° .

ĐÁP ÁN C

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc