Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai tam giác ABC và BAD bằng nhau ( c.c.c) nên có các đường trung tuyến tương ứng bằng nhau: CM = DM
Ta có tam giác MCD cân tại M, do đó MN ⊥ CD vì N là trung điểm của CD. Tương tự ta chứng minh được NA = NB và suy ra MN ⊥ AB. Mặt phẳng (CDM) không vuông góc với mặt phẳng (ABN) vì (CDM) chứa MN vuông góc với chỉ một đường thẳng AB thuộc (ABN) mà thôi.
Đặt \(AB=AC=AD=x\)
Do \(\widehat{BAC}=60^0\Rightarrow\Delta ABC\) đều \(\Rightarrow BC=x\)
Tương tự tam giác ABD đều \(\Rightarrow BD=x\)
\(\Rightarrow\Delta BCD\) cân tại B
Gọi H là hình chiếu vuông góc của A lên (BCD)
Do \(AB=AC=AD\Rightarrow HA=HB=HC\)
\(\Rightarrow H\) là tâm đường tròn ngoại tiếp tam giác
Mà BCD cân tại B \(\Rightarrow BH\perp CD\Rightarrow CD\perp\left(AHB\right)\Rightarrow CD\perp AB\)
b/Từ câu a, do N là trung điểm CD nên N là giao điểm của BH và CD
\(\Rightarrow MN\in\left(ABH\right)\Rightarrow CD\perp MN\)
Lại có: \(\Delta DBC=\Delta DAC\) (c.c.c)
\(\Rightarrow BN=AN\)
\(\Rightarrow\Delta ABN\) cân tại N \(\Rightarrow MN\perp AB\) (trong tam giác cân trung tuyến là đường cao)