Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+3+32+33+......+32008
32A=32+33+34+35+......+32010
9A-A=(32+33+34+35+......+32010)-(1+3+32+33+.....+32008)
8A=32010-(1+3)
8A=32010-4
B=8A-32010
-->B=32010-4-32010
B= -4
Vậy B= -4
\(A=1+3^2+3^4+...+3^{2008}\)
\(9A=3^2+3^4+...+3^{2008}+3^{2010}\)
\(\Rightarrow8A=3^{2010}-1\)
\(\Rightarrow B=3^{2010}-1-3^{2010}=-1\)
giải
A = 3+32+33+34+35+36+37+38+...+32010+32011+32012
A = (3+32+33+34)+(35+36+37+38)+...+(32009+32010+32011+32012)
A = 120+34.120+...+32008.120
A = 120.(1+34+...+32008) ⋮120
VẬY A chia hết cho120 (ĐPCM)
Ta có :
A = 1 + 32 + 34 + 36 + .... + 32008.
=> 9A = 32 + 34 + 36 + 38 + .... +32010
=> 9A - A = ( 32 + 34 + 36 + 38 + .... + 32010) - (1 + 32 + 34 + 36 + .... + 32008)
=> 8A = -1 + 32010
=> 8A - 32010 = -1
Ta có: \(A=1+3^2+3^4+3^6+...+3^{2008}\)
\(\Leftrightarrow3A=3^1+3^3+3^5+...+3^{2009}\)
\(\Leftrightarrow A+3A=1+3^1+3^2+3^3+...+3^{2009}\)
\(\Leftrightarrow4A=1+3^1+3^2+...+3^{2009}\)
\(\Leftrightarrow12A=3^1+3^2+3^3+...+3^{2010}\)
\(\Leftrightarrow12A-4A=3^{2010}-1\)
\(\Leftrightarrow8A=3^{2010}-1\)
Lại có: B=8A-32010
\(\Leftrightarrow B=3^{2010}-1-3^{2010}=0-1=\left(-1\right)\)
Vậy B=(-1)
A = 1+32+34+..........+32008
=> A = 30+32+34+.......+32008
=> 9A = 32+34+36+.........+32010
=> 9A -A= 32+34+36+.........+32010- 30+32+34+.......+32008
=> 8A = 32010- 1
=> 8A -32010= 32010- 1 -32010
=> 8A -32010 = -1
=> B = -1
\(2B=2-2^2+2^3-2^4+2^5-...-2^{2008}+2^{2009}\)
\(2B+B=1-2^{2009}\)
\(B=\frac{1+2^{2009}}{3}\)
Theo đề bài ra, ta có :
`A=1+32+34+36+....+32008`
\(\Rightarrow\) `9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010`
`9A - A=(32+34+36+38+....+ 32010)-(1+32+34+36+....+ 32008)`
\(\Rightarrow\) `8A=(-1)+32010`
\(\Rightarrow\) `8A-32010=(-1)`
@Nae
`1+32+34+36?` Đề nào cho đấy?