Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath
Chứng minh tích chia hết cho 121 , mà 121 là 1 số chính phương
=> T có ít nhất 1 số chính phương.
a) \(n=a^2+b^2\)
\(2n=2a^2+2b^2=a^2+b^2-2ab+a^2+b^2+2ab=\left(a-b\right)^2+\left(a+b\right)^2\)
b) \(2n\)là số chẵn nên hai số chính phương có tổng là \(2n\)cùng tính chẵn lẻ.
\(2n=\left(a-b\right)^2+\left(a+b\right)^2\)
\(\Rightarrow n^2=a^2+b^2\)
c) \(n^2=\left(a^2+b^2\right)^2=a^4+2a^2b^2+b^4=a^4-2a^2b^2+b^4+4a^2b^2\)
\(=\left(a^2-b^2\right)^2+\left(2ab\right)^2\)
\(\frac{a}{b}=\frac{a^2+n^2}{b^2+n^2}=t\Rightarrow\hept{\begin{cases}a=bt\\a^2+n^2=t\left(b^2+n^2\right)\end{cases}}\)
\(\Rightarrow b^2t^2+n^2=b^2t+n^2t\)
\(\Leftrightarrow b^2\left(t^2-t\right)=n^2\left(t-1\right)\)
Nếu \(t=1\)thì: \(a=b\Rightarrow ab=a^2\)là số chính phương.
Nếu \(t\ne1\)thì: \(t=\frac{n^2}{b^2}\)
Khi đó \(a=b.\frac{n^2}{b^2}\Leftrightarrow ab=n^2\)là số chính phương.
Ta có:
na^2=b^2
=>n=b^2:a^2
=>n=(b:a)^2
Vì n;a;bEN
=>(b:a)^2EN
=>b:aEN
=>(b:a)^2 là số chính phương
=>n là số chính phương\
Vậy.......