K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

Do ad = bc

=> \(\frac{ad}{cd}=\frac{bc}{cd}\)

=> \(\frac{a}{c}=\frac{b}{d}\left(đpcm\right)\)

21 tháng 9 2016

Do ad = bc

\(\Rightarrow\frac{a}{d}=\frac{b}{c}\)

\(\Rightarrow ac=bd\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\left(\text{đ}pcm\right)\)

15 tháng 9 2015

Trần Trương Quỳnh Hoa và câu hỏi tương tự có đấy, tick cho mình nha!

29 tháng 9 2015

\(ad=bc=>ad:dc=bc:dc=>\frac{ad}{dc}=\frac{bc}{dc}=>\frac{a}{c}=\frac{b}{d}\)

28 tháng 9 2015

\(ad=bc\Rightarrow\frac{ad}{cd}=\frac{bc}{cd}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

3 tháng 9 2020

Ta có:

\(\frac{a}{b}=\frac{c}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(1\right).\)

\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\left(2\right).\)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\left(đpcm\right).\)
 

3 tháng 9 2020

Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a+c}{b+c}=\frac{a-c}{b-d}\)( tính chất dãy tỉ số bằng nhau )

18 tháng 9 2021

Theo đề ra, ta có:

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

Từ \(\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

2 tháng 10 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Do đó \(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\)(1)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\)(2)

Từ (1) và (2) => \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

22 tháng 10 2015

Áp dụng tính chất dãy tỉ số bằng nhau

22 tháng 10 2015

ta có :

a/b=c/d

=>a/c=b/d

áp dụng tính chất dãy tỉ số = nhau ta có:

a/c=b/d=a+b/c+d (1)

a/c=b/d=a-b/c-d (2)

từ 1 và 2 =>a+b/c+d=a-c/b-d (đpcm)

26 tháng 9 2016

theo t/c dãy tỉ số = nhau,ta có

a/b=c/d=a+c/b+d=a-c/b-d

-> đpcm

26 tháng 9 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Xét VT \(\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(1\right)\)

Xét VP \(\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\left(2\right)\)

Từ (1) và (2) ->Đpcm