Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt a/b=c/d=k
=>a=bk ; c=dk
=>a-b/a=bk-b/bk=b(k-1)/bk=k-1/k
c-d/c=dk-d/dk=d(k-1)/dk=k-1/k
vậy a-b/b=c-d/c ( vì cùng bằng k-1/k)
ta có:a/b=c/d
=>a/c=b/d
áp dụng tích chất dãy tỉ số bằng nhau ta có:
a/c=b/d=a+b/c+d=a-c/c-d
=>a+b/c+d=a-b/c-d
do đó: a+b/a-c=c+d/c-d
\(\frac{a+b}{b}=1\frac{a}{b}\)
\(\frac{c+d}{d}=1\frac{c}{d}\)
Vì \(\frac{c}{d}=\frac{a}{b}\)nên\(1\frac{c}{d}=1\frac{a}{b}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
\(\RightarrowĐPCM\)
\({a \over b}={c \over d} => ad=bc \)
\({a+b \over b}={c+d \over d} \) chỉ khi (a+b)d = (c+d)b <=> ad+bd=bc+bd mà ad=bc => ad+bd=bc+bd => \({a+b \over b}={c+d \over d}\)
mấy câu sau làm tương tự chủ yếu là nhân chéo
Theo tính chất tỉ lệ thức :
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)+\left(a-b+c\right)}{\left(a+b-c\right)+\left(a-b-c\right)}=\frac{a+c}{a-c}\) (1)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{2b}{2b}\) (2)
Từ (1) và (2) => \(\frac{a+c}{a-c}=1\)
=> a + c = a - c
=> 2c = 0
=> c = 0
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(đpcm)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(điều phải chứng minh)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Theo t/c dãy số bằng nhau, ta có:
a+b+c/a+b-c=a-b+c/a-b-c=a+b+c-(a-b+c)/a+b-c-(a-b-c)=a+b+c-a+b-c/a+b-c-a+b+c=2b/2b=1 => a+b+c=a+b-c => c= -c => c- (-c)=0 => c+c=0 => 2c=0 => c=0
#CHúc học tốt
Bài làm :
Theo tính chất tỉ lệ thức :
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)+\left(a-b+c\right)}{\left(a+b-c\right)+\left(a-b-c\right)}=\frac{a+c}{a-c}\text{(1)}\)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{2b}{2b}=1\text{(2)}\)
Từ (1) và (2)
\(\Rightarrow\frac{a+c}{a-c}=1\)
\(\Rightarrow a+c=a-c\)
\(\Rightarrow c=0\)
=> Điều phải chứng minh