K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2018

hình bạn tự vẽ nha

a) xét tam giác BMI và tam giác AMI có

BI=AI(giả thiết)

góc BIM = góc AIM(= 90 độ)

cạnh MI chung

=>tam giác BMI = tam giác AMI(c.g.c)

=>góc MBI= góc MAI(2 góc tương ứng)

16 tháng 7 2018

A B C D I K y x

a) Ta có AB = AC => ABC là tg cân ( cân tại A)

Xét \(\Delta ABD\)Và \(\Delta ACD\)

    \(\widehat{ACD}=\widehat{ABD}\)( TAM GIÁC CÂN )

\(AC=AB\)

    AD LÀ CẠNH CHUNG 

=>  2 tam giác = nhau ( c.g.c )

b) Ta có  Ay//BC 

=>  \(\widehat{yAC}=\widehat{ACB}\)( SO LE TRONG )

Mà \(\widehat{ACB}=\widehat{ABC}\)

=> \(\widehat{yAC}=\widehat{ABC}\)

c) Ta có tg ABC cân 

=> AD là đg phân giác cũng là đường cao

=> \(AD\perp BC\)

MÀ  \(Cx\perp BC\)

=> AD//Cx

d) Ta có Ay ( AK) //BC 

Mà \(\widehat{ADC}=90^O\)

=> \(DA\perp Ay\)

Tứ giác AKCD là hình chữ nhâtk

mà theo tính chất của hình chữ nhật ( 2 đường chéo cắt nhau tại trung điểm của mỗi đường )

=> I là trung điểm của DK

16 tháng 8 2015

a) xet tam giac ABC vuong tai A ta co 

BC2=AB2+AC2 ( dinh ly pitago thuan) =32+42=9+16=25=> BC=5 cm

b) xet tam giac BHM vuong tai H va tam giac CKM vuong tai K taco:

BM=CM ( M la trung diem BC ) va goc BMH= goc CMK ( 2 goc doi dinh)

--> tam giac BHM= tam giac CKM ( ch-gn)

c) tu diem H den duong thang IM ta co

HM la duong xien, HI la duong vuong goc --> HI < HM (quan he duong xien  duong vuong goc )

ma HM=MK ( tam giac BHM= tam giac CKM)

nen HI < MK

d)ta co : BK + KC> BC ( bat dang thuc trong tam giac BKC )

ma BH= CK ( tam giac BHM = tam giac CKM )

nen BK+BH > BC

xong roi

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cma)Tính AHb)CM: Tam giác ABH=tam giác ACHc)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE când)CM:AH là trung trực của DEBài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại Ha)Tam giác ADB=tam giác ACEb)Tam giác AHC cânc)ED song song BCd)AH cắt BC tại K, trên HK lất M...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cm

a)Tính AH

b)CM: Tam giác ABH=tam giác ACH

c)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE cân

d)CM:AH là trung trực của DE

Bài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại H

a)Tam giác ADB=tam giác ACE

b)Tam giác AHC cân

c)ED song song BC

d)AH cắt BC tại K, trên HK lất M sao cho K là trung điểm của HM.CM tam giác ACM vuông

Bài 3:Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC(E thuộc BC.Gọi F là giao điểm của BA và ED.CMR:

a)tam giác ABD=tam giác EBD

b)Tam giác ABE là tam giác cân

c)DF=DC

Bài 4: Cho tam giác ABC có góc A=90 độ,AB=8cm,AC=6cm

a) Tính BC

b)Trên cạnh AC lấy điểm E sao cho AE=2cm,trên tia đối của tia AB lấy D sao cho AD=AB.CM: tam giác BEC=tam giác DEC

c)CM: DE đi qua trung điểm cạnh BC

0
   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC