Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{DB}{DE}=\dfrac{a\sqrt{2}}{a}=\sqrt{2}\)
\(\dfrac{DC}{DB}=\dfrac{2a}{\sqrt{2}a}=\sqrt{2}\)
Do đó: DB/DE=DC/DB
Xét ΔDBC và ΔDEB có
DB/DE=DC/DB
góc D chung
Do đó: ΔDBC đồng dạng với ΔDEB
Ta thấy :
AD=DE=EC =\(\frac{1}{3}AC=1\left(cm\right)\)
Xét tam giác ABC vuông tại A :
\(\Rightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{1+1}=\sqrt{2}\)
b)
Xét:\(\frac{BD}{DE}=\frac{\sqrt{2}}{1}=\sqrt{2}\)
\(\frac{DC}{BD}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
\(\Rightarrow\frac{BD}{DE}=\frac{DC}{DB}\)
Xét tam giác BDE và tam giác CDB có
BDC chung
\(\frac{BD}{DE}=\frac{DC}{DB}\)(CMT)
tam giác BDE đồng dạng với tam giác CDB
\(\widehat{DBE}=\widehat{BCD}\)
\(\Rightarrow\widehat{DEB}+\widehat{DCB}=\widehat{DEB}+\widehat{DBE}=\widehat{ADB}\)
mà tam giác ABD vuông tại A có AB=AD=1 (cm)
nên tam giác ABD vuông cân nên ADB=ABD=45 độ
hay \(\Rightarrow\widehat{DEB}+\widehat{DCB}=\widehat{ADB}=45^0\)
Mình không biết vẽ hình trên đây bạn tự vẽ hình nhé
a, Xét tam giác BDA và tam giác KDC có: Góc BDA= Góc KDC(đối đỉnh)
Góc B= Góc K(90 độ)
=>Tam giác BDA đồng dạng với tam giác KDC(g.g)
=>\(\frac{DB}{DA}=\frac{DK}{DC}\)
b, Xét tam giác DBK và tam giác DAC có: Góc BDK= Góc DAC(đối đỉnh)
\(\frac{DB}{DA}=\frac{DK}{DC}\)
=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)
c, Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại B, ta có:
BC2=AC2-AB2
BC2=52-32
BC2=16
BC=4(cm)
Vì AD là phân giác
=>\(\frac{AB}{AC}=\frac{BD}{CD}\)
=>\(\frac{AB}{AC+AB}=\frac{BD}{CD+BD}\)
=>\(\frac{3}{5+3}=\frac{BD}{BC}\)
=>\(\frac{3}{8}=\frac{BD}{4}\)
=>BD=1,5(cm)
=>CD=BC-BD
CD=4-1,5
CD=2,5(cm)
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!
b) Ta có: AD+DC=AC(D nằm giữa A và C)
nên DC=AC-AD=3-1=2(cm)
Ta có: DE=AD(gt)
mà AD=1cm(cmt)
nên DE=1cm
Ta có: \(\dfrac{BD}{CD}=\dfrac{\sqrt{2}}{2}\)
\(\dfrac{DE}{DB}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
Do đó: \(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)\(\left(=\dfrac{\sqrt{2}}{2}\right)\)
Xét ΔBDE và ΔCDB có
\(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)(cmt)
\(\widehat{BDE}\) chung
Do đó: ΔBDE\(\sim\)ΔCDB(c-g-c)
a) Ta có: AD+DE+EC=AC
mà AD=DE=EC(gt)
nên \(AD=\dfrac{AC}{3}=\dfrac{3}{3}=1\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=AB^2+AD^2\)
\(\Leftrightarrow BD^2=1+1=2\)
hay \(BD=\sqrt{2}cm\)
Vậy: \(BD=\sqrt{2}cm\)