Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Gọi số đó là a b c d e
TH1: a = 1
b:7 cách; c:6 cách; d:5 cách; e:4 cách => Có 7.6.5.4 = 840 số.
TH2: b = 1
a: 6 cách; c:6 cách; d:5 cách; e:4 cách => Có 6.6.5.4 = 720 số.
TH3: c = 1
a: 6 cách; b:6 cách; d:5 cách; e:4 cách => Có 6.6.5.4 = 720 số.
Vậy có 840 +720 +720 = 2280 số.
Chọn C
Giả sử số lập được có dạng
Ta có
Vì nên ta có các trường hợp sau
Trường hợp 1: a 1 , a 2 , a 3 , a 4 , a 5 , a 6 được chọn từ
+ Có 3 cách chọn chọn a 6
+ Có 5! cách chọn chọn bộ 5 số
Suy ra có 3.5! = 360 số.
Trường hợp 2: a 1 , a 2 , a 3 , a 4 , a 5 , a 6 được chọn từ
+ a 6 = 0, có 5! cách chọn bộ 5 số
+ a 6 ≠ 0 khi đó a 6 có 3 cách chọn, a 1 có 4 cách chọn và có 4! cách chọn bộ 4 số
Suy ra có 5! + 3.4.4!= 408 số
Trường hợp 3: a 1 , a 2 , a 3 , a 4 , a 5 , a 6 được chọn từ
+ a 6 = 0, có 5! cách chọn bộ 5 số
+ a 6 ≠ 0 khi đó a 6 có 1 cách chọn, a 1 có 4 cách chọn và có 4! cách chọn bộ 4 số
Suy ra có 5! + 1.4.4! = 216 số
Vậy có: 360 + 408 + 216 = 984 số.
1.
Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)
Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách
Tổng cộng: \(4.A_6^4\) cách
2.
Gọi chữ số cần lập có dạng \(\overline{abcd}\)
a.
Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách
Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách
\(\Rightarrow A_6^4-A_5^3=300\) số
b.
Để số được lập là số chẵn \(\Rightarrow\) d chẵn
TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Tổng cộng: \(A_5^3+96=156\) số
Xác suất \(P=\dfrac{156}{300}=...\)
a. Gọi số đó là \(\overline{ab}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)
Theo quy tắc nhân ta có: \(5.5=25\) số
b. Gọi số đó là \(\overline{abc}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)
Có: \(5.5.4=100\) số
c. Gọi số đó là \(\overline{abcd}\)
Do số chẵn nên d chẵn
- TH1: \(d=0\) (1 cách chọn d)
a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow1.5.4.3=60\) số
- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn
d.
Gọi số đó là \(\overline{abcde}\)
Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)
a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách
\(\Rightarrow3.4.4.3.2=288\) số
Đáp án : D
Để tính nhanh với bài này ta dùng quy tắc phần bù.
Trước tiên ta tính số các số chẵn có 5 chữ số đôi một khác nhau và được lập ra từ các chữ số của tập A.
+ Gọi các số đó là
e có 4 cách chọn( vì x là số chẵn nên e có thể là 2;34;6;8); a có 8 cách; b có 7 cách; c có 6 cách và d có 5 cách.
Nên có tất cả 4.8.7.6.5=6720 số
+ Gọi là số bắt đầu bởi 125 và có 5 chữ số đôi một khác nhau.
Suy ra b có 3 cách chọn (b có thể là 2;4;8), a có 5 cách chọn nên có số.
+ Suy ra có tất cả 6720 - 15 = 6705 số cần tìm.
Gọi số tự nhiên cần tìm có dạng .
TH1: Nếu a=1 khi đó có cách chọn 4 chữ số xếp vào b;c;d;e.
TH2: Nếu a khác 1 , khi đó: Có 6 cách chọn a. Có 2 cách xếp chữ số 1 vào số cần tạo ở vị trí b hoặc c. Các chữ số còn lại trong số cần tạo có cách chọn.
Như vậy trường hợp này có số.
Vậy có tất cả 840+1440=2280 số.
chọn A.
Gọi số cần lập có dạng \(\overline{abcde}\)
e có 4 cách chọn (từ 1;3;5;7)
a có 6 cách chọn (khác 0 và e)
b có 6 cách chọn (khác a và e)
c có 5 cách chọn (khác a,b,e)
d có 4 cách chọn (khác a,b,c,e)
Theo quy tắc nhân, có: \(4.6.6.5.4=...\) số