K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

Đáp án B

Gọi số đó là  a b c d e

TH1: a = 1

          b:7 cách; c:6 cách; d:5 cách; e:4 cách =>7.6.5.4 = 840 số.

TH2: b = 1

          a: 6 cách; c:6 cách; d:5 cách; e:4 cách =>6.6.5.4 = 720 số.

TH3: c = 1

          a: 6 cách; b:6 cách; d:5 cách; e:4 cách =>6.6.5.4 = 720 số.

Vậy có 840 +720 +720 = 2280 số.

30 tháng 11 2017

Đáp án D

Phương pháp: Xét từng trường hợp: chữ số đầu tiên bằng 1, chữ số thứ hai bằng 1, chữ số thứ ba bằng 1.

Cách giải: Gọi số đó là  a b c d e

- TH1: a = 1

+ b có 7 cách chọn.

+ c có 6 cách chọn.

+ d có 5 cách chọn.

+ e có 4 cách chọn.

Nên có: 7.6.5.4 = 840 số

- TH2: b = 1

+ a ≠ b ,   a   ≠ 0 , nên có 6 cách chọn.

+ c có 6 cách chọn.

+ d có 5 cách chọn.

+ e có 4 cách chọn.

Nên có: 6.6.5.4 = 720 số.

- TH3: c = 1.

+ a ≠ c ,   a ≠ 0 , nên có 6 cách chọn.

+ b có 6 cách chọn.

+ d có 5 cách chọn.

+ e có 4 cách chọn.

Nên có 6.6.5.4 = 720 số.

Vậy có tất cả 840 + 720 + 720 = 2280 số.

4 tháng 4 2018

Gọi số tự nhiên cần tìm có dạng  .

TH1: Nếu a=1 khi đó có  cách chọn 4 chữ số xếp vào b;c;d;e.

TH2: Nếu a khác 1  , khi đó: Có 6 cách chọn a. Có 2 cách xếp chữ số 1 vào số cần tạo ở vị trí b hoặc c. Các chữ số còn lại trong số cần tạo có   cách chọn.

Như vậy trường hợp này có  số.

Vậy có tất cả  840+1440=2280 số.

chọn A.

NV
18 tháng 1

Gọi số cần lập có dạng \(\overline{abcde}\)

e có 4 cách chọn (từ 1;3;5;7)

a có 6 cách chọn (khác 0 và e)

b có 6 cách chọn (khác a và e)

c có 5 cách chọn (khác a,b,e)

d có 4 cách chọn (khác a,b,c,e)

Theo quy tắc nhân, có: \(4.6.6.5.4=...\) số

25 tháng 1 2017

Chọn C

Giả sử số lập được có dạng 

Ta có 

Vì  nên ta có các trường hợp sau

Trường hợp 1:  a 1 ,   a 2 ,   a 3 ,   a 4 ,   a 5 ,   a 6  được chọn từ 

+ Có 3 cách chọn chọn a 6

+ Có 5! cách chọn chọn bộ 5 số 

Suy ra có 3.5! = 360 số.

Trường hợp 2:  a 1 ,   a 2 ,   a 3 ,   a 4 ,   a 5 ,   a 6   được chọn từ 

a 6 = 0, có 5! cách chọn bộ 5 số 

a 6 ≠ 0 khi đó  a 6 có 3 cách chọn,  a 1 có 4 cách chọn và có 4! cách chọn bộ 4 số 

Suy ra có 5! + 3.4.4!= 408 số

Trường hợp 3:  a 1 ,   a 2 ,   a 3 ,   a 4 ,   a 5 ,   a 6  được chọn từ 

a 6  = 0, có 5! cách chọn bộ 5 số 

a 6 ≠ 0 khi đó  a 6  có 1 cách chọn,   a 1  có 4 cách chọn và có 4! cách chọn bộ 4 số 

Suy ra có 5! + 1.4.4! = 216 số

Vậy có: 360 + 408 + 216 = 984 số. 

27 tháng 9 2019

Chọn B.

? TH1: 1 nằm ở vị trí đầu

4 chữ số phía sau có: 7.6.5.4 =840 (cách)

? TH2: 1 không nằm ở đầu

Có 2 cách chọn vị trí cho số 1

Vị trí đầu có 6 cách

3 vị trí còn lại có 6.5.4 = 120 (cách)

Số các số thỏa là:  2.6.120 = 1440

 

Số cách chọn là: 840 + 1440 = 2280 (cách)

13 tháng 10 2018

Đáp án : D

Để tính nhanh với bài này ta dùng quy tắc phần bù.

Trước tiên ta tính số các số  chẵn có 5 chữ số đôi một khác nhau và được lập ra từ các chữ số của tập A.

+ Gọi các số đó là  

e  có 4 cách chọn( vì x là số chẵn nên e có thể là 2;34;6;8); a có 8 cách; b có 7 cách; c có 6 cách và d có 5 cách.

Nên có tất cả 4.8.7.6.5=6720 số

+ Gọi  là số bắt đầu bởi 125 và có 5 chữ số đôi một khác nhau.

Suy ra b có 3 cách chọn (b có thể là 2;4;8), a có 5 cách chọn nên có  số.

+ Suy ra có tất cả 6720 - 15 = 6705 số cần tìm.