Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
a) AP2 + BH2 + CK2 = AM2 - MP2 + MB2 - MH2 + MC2 - MK2
= AM2 - MK2 + MC2 - MH2 + MB2 - MP2
= AK2 + CH2 + BP2 (đpcm)
b) ta có:
AP2 + BH2 + CK2 = AK2 + CH2 + BP2 (cmt)
=> 2 (AP2 + BH2 + CK2) = (AP2 + BP2) + (CK2 + AK2) + (BH2 + CH2)
\(\ge\)\(\dfrac{\left(AP+BP\right)^2}{2}\)+ \(\dfrac{\left(AK+CK\right)^2}{2}\)+\(\dfrac{\left(CH+BH\right)^2}{2}\)=\(\dfrac{a^2+b^2+c^2}{2}\)
Vậy GTNN của AP2 + BH2 + CK2 là \(\dfrac{a^2+b^2+c^2}{4}\)
<=> M là giao điểm ba đường trung trực của tam giác
https://diendantoanhoc.net/topic/88167-tim-v%E1%BB%8B-tri-c%E1%BB%A7a-i-d%E1%BB%83-al2bh2ck2-nh%E1%BB%8F-nh%E1%BA%A5t/
Loa loa, tin nóng hổi. CẶP VỢ CHỒNG SON TRẺ NHẤT VIỆT NAM ĐÂY
https://olm.vn/thanhvien/nhu140826
https://olm.vn/thanhvien/trungkienhy79
Tình yêu đã giúp cho hai anh chị 2k6 này bất chấp tất cả (học tập, vui chơi),nể thật.
a) Xét tam giác ABD và tam giác ACE có
góc ADB = góc AEC = 90 độ
AB=AC
góc A: chung
=> tam giác ABD = tam giác ACE (cạnh huyền - góc nhọn)
=> BD=CE và AD=AE
b) Vì AB=AC và AE=AD => AB-AE=AC-AD => BE=CD
Xét tam giác OEB và tam giác ODC có
góc OEB = góc ODC = 90 độ
BE=CD
góc BOE = góc COD (đối đỉnh)
=> tam giác OEB = tam giác ODC => OB=OC
c) Xét tam giác AOB và tam giác AOC có
AB=AC
OB=OC
AO: cạnh chung
=> tam giác AOB = tam giác AOC (c.c.c)
=> góc OAB=góc OAC
=> AO la tia phân giác góc BAC
a) Xét tam giác vuông AEO và tam giác vuông AFO có:
Cạnh AO chung
\(\widehat{EAO}=\widehat{FAO}\) (gt)
\(\Rightarrow\Delta AEO=\Delta AFO\) (Cạnh huyền - góc nhọn)
\(\Rightarrow OE=OF\)
Do O thuộc trung trực BC nên tam giác OBC cân tại O hay OB = OC.
Xét tam giác vuông EBO và tam giác vuông FCO có:
EO = FO (cmt)
OB = OC (cmt)
\(\Rightarrow\Delta EBO=\Delta FCO\) (Cạnh huyền - cạnh góc vuông)
\(\Rightarrow BE=CF.\)
b) Từ B, kẻ đường thẳng song song AC, cắt EF tại K.
Ta có : \(\widehat{BKE}=\widehat{AFE}\) nên \(\widehat{BKE}=\widehat{AEF}\) . Vậy tam giác BEK cân tại B hay BE = BK
Lại có BE = CF nên BK = FC
Xét tam giác BKM và tam giác CFM có:
BM = CM
BK = CF
\(\widehat{KBM}=\widehat{FCM}\) (So le trong)
\(\Rightarrow\Delta BKM=\Delta CFM\left(c-g-c\right)\)
\(\Rightarrow\widehat{BMK}=\widehat{CMF}\) (Hai góc tương ứng)
Vậy K, M, F thẳng hàng.
c) Ta cần chứng minh \(IA^2+IE^2+IO^2+IF^2=OA^2\)
Ta thấy ngay AE = AF, OE = OF nên OA là trung trực của EF.
Vậy thì \(AO\perp EF\) hay các tam giác AIE và IOF vuông.
Áp dụng định lý Pi-ta-go ta có: \(AI^2+EI^2=AE^2;IO^2+IF^2=OF^2=OE^2\)
Xét tam giác buông AEO thì \(AE^2+EO^2=AO^2\)
Vậy nên \(AI^2+EI^2+IO^2+IF^2=AO^2.\)
xét tam giác ABH VÀ TAM GIÁC ACH CÓ
AB=AC
AH CHUNG
GÓC AHB=GÓC AHC
=>TAM GIÁC AHC=TAM GIÁC ABH
Ai biết được, tớ mới học lớp 5.
lớp 5 nói làm gì,anh????