K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 7 2017

Lời giải:

Áp dụng định lý về dấu của tam thức bậc 2

\(f(x)=3x^2-6(2m+1)x+12m+5>0\) với mọi \(x\in \mathbb{R}\)

\(\Leftrightarrow \Delta'=9(2m+1)^2-3(12m+5)<0\)

\(\Leftrightarrow 36m^2-6<0\Leftrightarrow -\sqrt{\frac{1}{6}}< m<\sqrt{\frac{1}{6}}\)

9 tháng 11 2018

Dùng delta đi

9 tháng 11 2018

giải giúp mk đi Mashiro Shiina

11 tháng 2 2020

f(x)>0 <=>\(x^2-\left(m+2\right)x+2m+1>0\)

Bất phương trình có a=1>0

=>Bất phương trình đúng với mọi x thuộc tập số thực

<=>\(\Delta< 0\)(Vì khi \(\Delta\)<0 thì f(x) cùng dấu a với mọi x thuộc tập số thực)

\(\Leftrightarrow\left(m-2\right)^2-4\left(2m+1\right)< 0\)

\(\Leftrightarrow m^2-12m< 0\)

\(\Leftrightarrow0< m< 12\)

I.ĐẠI SỐ CHƯƠNG 4. BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH 1. Bất phương trình Khái niệm bất phương trình. Nghiệm của bất phương trình. Bất phương trình tương đương. Phép biến đổi tương đương các bất phương trình. 2. Dấu của một nhị thức bậc nhất Dấu của một nhị thức bậc nhất. Hệ bất phương trình bậc nhất một ẩn. 3. Dấu của tam thức bậc hai Dấu của tam thức...
Đọc tiếp
I.ĐẠI SỐ CHƯƠNG 4. BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH 1. Bất phương trình Khái niệm bất phương trình. Nghiệm của bất phương trình. Bất phương trình tương đương. Phép biến đổi tương đương các bất phương trình. 2. Dấu của một nhị thức bậc nhất Dấu của một nhị thức bậc nhất. Hệ bất phương trình bậc nhất một ẩn. 3. Dấu của tam thức bậc hai Dấu của tam thức bậc hai. Bất phương trình bậc hai. Bài tập. 1. Xét dấu biểu thức f(x) = (2x - 1)(5 -x)(x - 7). g(x)= [1/(3-x)]-[1/(3+x)] h(x) = -3x2 + 2x – 7 k(x) = x2 - 8x + 15 2. Giải bất phương trình a) [(5-x)(x-7)]/x-1 > 0 b) –x2 + 6x - 9 > 0; c) -12x2 + 3x + 1 < 0. g) (2x - 8)(x2 - 4x + 3) > 0 h) k) l). (1 – x )( x2 + x – 6 ) > 0 m). 3. Giải bất phương trình a/ b/ c/ d/ e/ 4) Giải hệ bất phương trình sau a) . b) . c) d) 5) Với giá trị nào của m, phương trình sau có nghiệm? a) x2+ (3 - m)x + 3 - 2m = 0. b) 6) Cho phương trình : Với giá nào của m thì : a) Phương trình vô nghiệm b) Phương trình có các nghiệm trái dấu 7) Tìm m để bpt sau có tập nghiệm là R: a) b) 8) Xác định giá trị tham số m để phương trình sau vô nghiệm: x2 – 2 (m – 1 ) x – m2 – 3m + 1 = 0. 9) Cho f (x ) = ( m + 1 ) x – 2 ( m +1) x – 1 a) Tìm m để phương trình f (x ) = 0 có nghiệm b). Tìm m để f (x) 0 ,
0
30 tháng 3 2017

30 tháng 3 2017

Cách nhận biết đa thức

\(f\left(x\right)=ax^2+bx+c\)

Có nghiệm hay vô nghiệm

Lập \(\Delta\) ( đọc là delta )

\(\Delta=b^2-4ac\)

Nếu \(\Delta< 0\) : đa thức vô nghiệm

Nếu \(\Delta\ge0\) : đa thức có nghiệm

Nếu \(\Delta>0\) : đa thức có hai nghiệm

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)