K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 7 2017

Lời giải:

Áp dụng định lý về dấu của tam thức bậc 2

\(f(x)=3x^2-6(2m+1)x+12m+5>0\) với mọi \(x\in \mathbb{R}\)

\(\Leftrightarrow \Delta'=9(2m+1)^2-3(12m+5)<0\)

\(\Leftrightarrow 36m^2-6<0\Leftrightarrow -\sqrt{\frac{1}{6}}< m<\sqrt{\frac{1}{6}}\)

23 tháng 5 2021

Pt có No ⇔ \(\Delta'\ge0\Leftrightarrow9\left(2m+1\right)^2-3\left(12m+5\right)\ge0\)

                                \(\Leftrightarrow36m^2-6\ge0\Leftrightarrow m^2\ge\dfrac{1}{6}\Leftrightarrow\left\{{}\begin{matrix}m\ge\dfrac{1}{6}\\m\le-\dfrac{1}{6}\end{matrix}\right.\)

11 tháng 2 2020

f(x)>0 <=>\(x^2-\left(m+2\right)x+2m+1>0\)

Bất phương trình có a=1>0

=>Bất phương trình đúng với mọi x thuộc tập số thực

<=>\(\Delta< 0\)(Vì khi \(\Delta\)<0 thì f(x) cùng dấu a với mọi x thuộc tập số thực)

\(\Leftrightarrow\left(m-2\right)^2-4\left(2m+1\right)< 0\)

\(\Leftrightarrow m^2-12m< 0\)

\(\Leftrightarrow0< m< 12\)

10 tháng 3 2023

\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)

\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)

\(\Leftrightarrow-7m^2+38m-15< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(KL:m\in\left(5;+\infty\right)\)

13 tháng 11 2017

Ai jup m câu này với

NV
2 tháng 4 2020

Do \(a=1>0\) nên để \(f\left(x\right)>0\) \(\forall x\)

\(\Leftrightarrow\Delta'< 0\)

\(\Leftrightarrow\left(4m-1\right)^2-\left(15m^2-2m-7\right)< 0\)

\(\Leftrightarrow m^2-6m+8< 0\)

\(\Leftrightarrow2< m< 4\)

2 tháng 4 2020

yeu

13 tháng 4 2020

\(f(x)=x^2+2mx+m+6\)

Để $f(x) >0 \forall x \in \mathbb{R}$ thì \(\left\{{}\begin{matrix}1>0\\\Delta'< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in R\\m^2-\left(m+6\right)< 0\end{matrix}\right.\)\(\Leftrightarrow m^2-m-6< 0\Leftrightarrow-2< m< 3\)

KL: ....................