Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé.
a.
Xét tứ giác AEBD có:
AH = HB (H là trung điểm của AB)
HE = HD (vì E và D đối xứng với nhau qua H)
=> AEBD là hình bình hành.
Lại có: \(\widehat{ADB}=90^o\) (AD là đường trung tuyến của tam giác cân ABC)
Từ trên suy ra: AEBD là hình chữ nhật.
b.
Vì AEBD là hình chữ nhật nên ta có:
- AE // BD và AE = BD (1)
mà: BC // AE và BD = DC (2)
Từ (1), (2) suy ra: ACDE là hình bình hành.
c.
có: \(S_{AEBD}=AD.DB=\dfrac{1}{2}.AD.BC=S_{ABC}\)
d.
Để AEBD là hình vuông thì AD = BD
=> \(AD=\dfrac{1}{2}BC\) => Tg ABC vuông.
Mà AB = AC
=> Điều kiện của tam giác ABC là vuông cân tại A để AEBD là hình vuông.
mình rảnh nên mình vẽ thôi :V A B C D M E
a. xét tam giác ABC, có:
M là trung điểm AB (giả thuyết)
D là trung điểm BC (AD là đường trung tuyến tam giác ABC)
=> MD là đường trung bình tam giác ABC
=> MD // AC
mà E thuộc MD (E là điểm đối xứng của D qua M)
=> DE // AC (1)
ta có: MD là đường trung bình tam giác ABC (chứng minh trên)
=> MD = \(\frac{1}{2}\)AC
mà M là trung điểm cua ED (E là điểm đối xứng của D qua M)
=> ED = AC (2)
từ (1),(2):
=> AEDC là hình bình hành (tứ giác có 1 cặp cạnh đối vừa song song, vừa bằng nhau) (chỗ này đề sai nên mình sửa lại là AEDC)
b. xét tứ giác AEBD, có:
M là trung điểm ED (E là điểm đối xúng của D qua M)
M là trung điểm AB (giả thuyết)
ED cắt AB tại M
=> AEBD là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)
xét tam giác ABC vuông A, có:
AD là đường trung tuyến (giả thuyết)
=> AD = BD
mà AEBD là hình bình hành (chứng minh trên)
=> AEBD là hình thoi (hình bình hành có 2 cặp cạnh kề bằng nhau)
C. ta có: D là trung điểm của BC (AD là đường trung tuyến)
=> BD = \(\frac{1}{2}\)BC
=> BD= \(\frac{5}{2}\)
=> BD= 2.5 cm
ta có: AEBD là hình thoi (chứng minh trên)
=> P(chu vi)AEBD = 2.5x4
= 10 cm
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh
A B C K E M y x D
a, xét tứ giác ACBM có: BM // AC (gt) và AM // BC (gt)
=> ACBM là hình bình hành (đn)
b, BE // AD (gt)
BD _|_ AD (gt)
=> BE _|_ AD (đl)
=> ^EBD = 90 = ^BDA = ^AEB
=> ADBE là hình chữ nhật (dh)
c, Tam giác ABC cân tại B (gt) ; BD là đường cao (gt)
=> BD là trung tuyến của tam giác ABC (đl)
=> D là trung điểm của AC (Đn)
D là trung điểm của BK do B đối xứng với K qua D (Gt)
=> BAKC là hình bình hành (dh)
mà BD _|_ AC (Gt)
=> BAKC là hình thoi (dh)
d, có BAKC là hình thoi (câu c)
=> AK // BC (tc)
AM // BC (gt)
=> A; M; K thẳng hàng (tiên đề Ơclit) (1)
AK = BC do BAKC là hình thoi (câu c)
AM = BC do ACBM là hình bình hành (câu a)
=> AM = MK và (1)
=> A là trung điểm của KM (đn)
=> M đối xứng với K qua A (đn)
e, BMKC là hình thang (KM // BC)
để BMKC là hình thang cân
<=> ^BMK = ^MKC (dh)
^BMK = ^BCA do BMAC là hình bình hành (câu a)
^AKC = ^CBK do AKCB là hình thoi (câu c)
<=> ^ABC = ^ACB
mà tam giác ABC cân tại B (Gt)
<=> tam giác ABC đều
A A A B B B C C C D D D M M M E E E
a/ Ta có MD là đường tb tam giác BAC nên ME//AC(1)
Mà vì \(\Delta AEM=\Delta BDM\left(c.g.c\right)\Rightarrow\widehat{AEM}=\widehat{BDM}\Rightarrow\)AE//BC(2)
Từ (1) và (2) suy ra ngay ĐPCM
b/ Từ giả thiết là D,E và A,B đối xứng với nhau qua điểm M suy ra AEBD là hbh
Từ đó để AEBD là hình chữ nhật thì MD phải vuông góc với BC Từ đó suy ra tam giác ACB phải vuông ở C
A B C D K I O E
* Giả thiết kết luận bạn tự trình bày nhé
a) Ta có : AO = OC (gt) ( do D đối xứng với E qua O ) \(\widehat{ADC}=90^o\)(gt) . Vậy ADCE là hình chữ nhật
b) ADCE là hình chữ nhật thì AE // DC , AE = DC . Mà DC = BD ( do tam giác ABC cân ) . Suy ra , AE = BD
=> ABDE là hình bình hành . I là trung điểm của AD thì I là trung điểm của BE
c) Áp dụng định lí Py - ta - go cho tam giác vuông ABD
\(AD=\sqrt{AB^2-\left(\frac{BC}{2}\right)^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(S_{\Delta OAD}=\frac{1}{2}S_{ADC}=\frac{1}{2}.\frac{1}{2}.AD.DC=\frac{1}{4}.8.6=12\left(cm\right)\)
d) Tứ giác ABDE là hình bình hành do đó AKDE là hình thang
Để AKDE là hình thang cân thì KD = AE
Mà \(\hept{\begin{cases}KD=\frac{1}{2}AC\\AE=\frac{1}{2}BC\end{cases}\Rightarrow}AC=BC\)
\(\Rightarrow\Delta ABC\)là tam giác đều
Giải:
a) Ta có AM=MB và EM=MD ( đối xứng ) =>AEBD là hình bình hành
mà góc D = 90 (độ) => AEBD là hình chữ nhật
b) từ câu a =>AE//DC ; mà DC=DB (AD là đường cao của tam giác cân ABC =>là AD cũng đường trung tuyến)
=>ACDE là hình bình hành
c) để tứ giác AEBD là hình vuông thì:
như câu a thì AEBD là hình chữ nhật =>điều hiện là:AD=BD mà AD=BD =>tam giác ABC phải là tam giác vuông cân
d) S tam giác ABC= AD.BD/2 = AD.BD 1
S hình chữ nhật ABDE= AD.BD 2
Từ 1 và 2 =>S tam giác ABC = S hình chữ nhật ABDE (đpcm)
A E B D C M