Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. xét tam giác OBK và tam giác IBK có : BK chung
góc OBK = góc IBK do BK là pg của góc OBM (gt)
OB = BI (gt)
=> tam giác OBK = tam giác IBK (c-g-c)
b, tam giác OBK = tam giác IBK (câu a)
=> góc KOB = góc KIB (đn)
có góc KOB = 90
=> góc KIB = 90
=> KI _|_ BM (đn)
c, xét tam giác KOA và tam giác KIM có : góc AKO = góc MKI (đối đỉnh)
KO = KI do tam giác OBK = tam giác IBK (câu a)
góc KOA = góc KIM = 90
=> tam giác KOA = tam giác KIM (cgv-gnk)
=> AK = KM (Đn)
a) xét tam giác OBK và tam giác IBK có:
KB là cạnh chung
góc OBK= góc KBI (do BI là tia phân giác của góc B)
OB=IB (gt)
suy ra :tam giác OBK = tam giác KBI(1)
b) từ (1) suy ra góc KOB = góc KIB=900( 2 góc tương ứng ) (2)
c) xét tam giác OAK và tam giác IMK có:
góc AKO= góc IKM ( đối đỉnh)
góc AOK= góc KIM
OK=KI ( 2 góc tươg ứng chứng mih ở câu a)
suy ra tam giác OAK= tam giác IMK
suy ra AK=KM (2 cạnh tương ứng )
c)
Hình tự vẽ nak !
a, Xét tam giác OBK và tam giác IBK có:
^B1 = ^B2 (Phân giác)
BO = BI (gt)
BK chung
=> Tam giác OBK = tam giác IBK (c.g.c)
b, Vì Tam giác OBK = tam giác IBK (cmt)
=> ^KIB = ^KOB = 90o
=> KI vuông góc BM
c, Vì Tam giác OBK = tam giác IBK
=> KI = KO
Xét tam giác KOA và tam giác KIM có
^K1 = ^K2 (đối đỉnh)
KI = KO (cmt)
^KOA = ^KIM (=90o)
=> tam giác KOA = tam giác KIM(g.c.g)
=> KA = KM
Vậy .......
O B M K I A 1 2 1 2
a, Xét tam giác OBK và tam giác IBK có:
^B1 = ^B2 (Phân giác)
BO = BI (gt)
BK chung
=> Tam giác OBK = tam giác IBK (c.g.c)
b, Vì Tam giác OBK = tam giác IBK (cmt)
=> ^KIB = ^KOB = 90o
=> KI vuông góc BM
c, Vì Tam giác OBK = tam giác IBK
=> KI = KO
Xét tam giác KOA và tam giác KIM có
^K1 = ^K2 (đối đỉnh)
KI = KO (cmt)
^KOA = ^KIM (=90o)
=> tam giác KOA = tam giác KIM(g.c.g)
=> KA = KM
Vậy .......
Ta có hình vẽ:
O P M K I a/ Xét tam giác OPK và tam giác IPK có:
OP = IP (GT)
PK: cạnh chung
\(\widehat{OPK}\)=\(\widehat{IPK}\) (GT)
=> tam giác OPK = tam giác IPK (c.g.c)
b/ Ta có: tam giác OPK = tam giác IPK (câu a)
=> \(\widehat{O}\)=\(\widehat{I}\)=900 (2 góc tương ứng)
Vậy KI \(\perp\)BM (đpcm)
c/ Đề bài bạn cho không có các điểm A,B,C...?
Ta có hình vẽ sau:
O K P M I 1 2
a) Xét ΔOPK và ΔIPK có:
PK: Cạnh chung
\(\widehat{P_1}\) = \(\widehat{P_2}\) (gt)
PO = PI (gt)
=> ΔOPK = ΔIPK (c.g.c)
b) Vì ΔOPK = ΔIPK (ý a)
=> \(\widehat{O}\) = \(\widehat{I}\) = 90o
=> KI \(\perp\) BM (đpcm)
Không có BC nên k làm được nha bạn^^^
a: Xét ΔBOK và ΔBIK có
BO=BI
góc OBK=góc IBK
BK chung
Do đó: ΔBOK=ΔBIK
b: ΔBOK=ΔBIK
nên góc BIK=90 độ
=>IK vuông góc BM
c: Xét ΔKAO vuông tại O và ΔKIM vuông tại I có
KO=KI
góc OKA=góc IKM
Do đó: ΔKAO=ΔKIM
=>KA=KM
A B C M N Q P O R S T A B C H M D I A B C D K G M K E P F (Hình a) (Hình b) (Hình c) Q I
Bài toán 1: (Hình a)
Gọi đường thẳng qua N vuông góc với AN cắt AC tại R, qua P kẻ đường thẳng song song với BC. Đường thẳng này cắt AM,AN,BC lần lượt tại S,T,K.
Ta thấy \(\Delta\)APR có AN vừa là đường cao, đường phân giác => \(\Delta\)APR cân tại A => AP = AR, NP = NR
Áp dụng hệ quả ĐL Thales \(\frac{BM}{PS}=\frac{CM}{KS}\left(=\frac{AM}{AS}\right)\)=> PS = KS
Áp dụng ĐL đường phân giác trong tam giác: \(\frac{TK}{TP}=\frac{AK}{AP}\Rightarrow\frac{ST+SK}{TP}=\frac{AK}{AR}\)
\(\Rightarrow\frac{2ST+PT}{TP}=\frac{AR+RK}{AR}\Rightarrow\frac{2ST}{TP}=\frac{RK}{AR}\)
Dễ thấy NS là đường trung bình của \(\Delta\)RKP => RK = 2NS. Do đó \(\frac{ST}{TP}=\frac{NS}{AR}\)
Đồng thời NS // AR, suy ra \(\frac{ST}{TP}=\frac{NS}{AR}=\frac{SQ}{QA}\)=> QT // AP (ĐL Thaels đảo)
Mà AP vuông góc PO nên QT vuông góc PO. Từ đây suy ra T là trực tâm của \(\Delta\)POQ
=> QO vuông góc PT. Lại có PT // BC nên QO vuông góc BC (đpcm).
Bài toán 2: (Hình b)
Ta có IB = IC => \(\Delta\)BIC cân tại I => ^IBC = ^ICB = ^ACB/2 => \(\Delta\)MCI ~ \(\Delta\)MBC (g.g)
=> MC2 = MI.MB. Xét \(\Delta\)AHC có ^AHC = 900 , trung tuyến HM => HM = MC
Do đó MH2 = MI.MB => \(\Delta\)MIH ~ \(\Delta\)MHB (c.g.c) => ^MHI = ^MBH = ^MBC = ^MCI
=> Tứ giác CHIM nội tiếp. Mà CI là phân giác ^MCH nên (IH = (IM hay IM = IH (đpcm).
Bài toán 3: (Hình c)
a) Gọi đường thẳng qua C vuông góc CB cắt MK tại F, DE cắt BC tại Q, CG cắt BD tại I.
Áp dụng ĐL Melelaus:\(\frac{MB}{MC}.\frac{GA}{GB}.\frac{DC}{DA}=1\)suy ra \(\frac{DC}{DA}=2\)=> A là trung điểm DC
Khi đó G là trọng tâm của \(\Delta\)BCD. Do CG cắt BD tại I nên I là trung điểm BD
Dễ thấy \(\Delta\)BCD vuông cân tại B => BI = CM (=BC/2). Từ đó \(\Delta\)IBC = \(\Delta\)MCF (g.c.g)
=> CB = CF => \(\Delta\)BCF vuông cân ở C => ^CBA = ^CBF (=450) => B,A,F thẳng hàng
=> CA vuông góc GF. Từ đó K là trực tâm của \(\Delta\)CGF => GK vuông góc CF => GK // CM
Theo bổ đề hình thang thì P,Q lần lượt là trung điểm GK,CM. Kết hợp \(\Delta\)CEM vuông ở E
=> EQ=CM/2. Áp dụng ĐL Melelaus có \(\frac{GD}{GM}.\frac{EQ}{ED}.\frac{CM}{CQ}=1\)=> \(\frac{EQ}{ED}=\frac{1}{4}\)
=> \(\frac{ED}{CM}=2\)=> DE = 2CM = BC (đpcm).
b) Theo câu a thì EQ là trung tuyến của \(\Delta\)CEM vuông tại E => EQ = QC => ^QEC = ^QCE
Vì vậy ^PEG = ^QEC = ^QCE = ^PGE => \(\Delta\)EPG cân tại P => PG = PE (đpcm).
Hình vẽ đây :
a) Xét ΔOBK và ΔIBK có:
BO = BI (gt)
∠OBK = ∠IBK (BK là tia phân giác của ∠B)
BK: cạnh chung
⇒ ΔOBK = ΔIBK (c.g.c)
b) Ta có: ΔOBK = ΔIBK (theo a)
⇒ ∠BOK = ∠BIK (2 cạnh tương ứng)
mà ∠BOK = 90o90o (do ΔOBM vuông tại O)
⇒ ∠BIK = 90o90o ⇒ KI ⊥ BM
c) Ta có: ΔOBK = ΔIBK (theo a)
⇒ OK = IK (2 cạnh tương ứng)
Xét ΔOAK và ΔIMK có:
∠AOK = ∠MIK = 90o90o
OK = IK (cmt)
∠OKA = ∠IKM (2 góc đối đỉnh)
⇒ ΔOAK = ΔIMK (g.c.g)
⇒ KA = KM (2 cạnh tương ứng)
a) Xét ΔOBK và ΔIBK có:
BO = BI (gt)
∠OBK = ∠IBK (BK là tia phân giác của ∠B)
BK: cạnh chung
⇒ ΔOBK = ΔIBK (c.g.c)
b) Ta có: ΔOBK = ΔIBK (theo a)
⇒ ∠BOK = ∠BIK (2 cạnh tương ứng)
mà ∠BOK = 90o90o (do ΔOBM vuông tại O)
⇒ ∠BIK = 90o90o ⇒ KI ⊥ BM
c) Ta có: ΔOBK = ΔIBK (theo a)
⇒ OK = IK (2 cạnh tương ứng)
Xét ΔOAK và ΔIMK có:
∠AOK = ∠MIK = 90o90o
OK = IK (cmt)
∠OKA = ∠IKM (2 góc đối đỉnh)
⇒ ΔOAK = ΔIMK (g.c.g)
⇒ KA = KM (2 cạnh tương ứng)