K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2020

a. xét tam giác OBK và tam giác IBK có : BK chung

góc OBK = góc IBK do BK là pg của góc OBM (gt)

OB = BI (gt)

=> tam giác OBK = tam giác IBK (c-g-c)

b, tam giác OBK = tam giác IBK (câu a)

=> góc KOB = góc KIB (đn)

có góc KOB = 90

=> góc KIB = 90 

=> KI _|_ BM (đn)

c, xét tam giác KOA và tam giác KIM có : góc AKO = góc MKI (đối đỉnh)

KO = KI do tam giác OBK = tam giác IBK (câu a)

góc KOA = góc KIM = 90

=> tam giác KOA = tam giác KIM (cgv-gnk)

=> AK = KM (Đn)

17 tháng 12 2014

a) xét tam giác OBK và tam giác IBK có:

      KB là cạnh chung 

     góc OBK= góc KBI (do BI là tia phân giác của góc B)

      OB=IB (gt)

  suy ra :tam giác OBK = tam giác KBI(1)

b) từ (1) suy ra góc KOB = góc KIB=900( 2 góc tương ứng ) (2)

c)  xét tam giác OAK và tam giác IMK có:

      góc AKO= góc IKM ( đối đỉnh)

      góc AOK= góc KIM

      OK=KI ( 2 góc tươg ứng chứng mih ở câu a)

     suy ra tam giác OAK= tam giác IMK

    suy ra AK=KM (2 cạnh tương ứng )

c)

16 tháng 12 2014

bai nay de thoi ma

 

28 tháng 2 2018

a) Xét tam giác ADB và AEC có:

AD = AE (gt)

AB = AC (gt)

Góc A chung

\(\Rightarrow\Delta ADB=\Delta AEC\left(c-g-c\right)\Rightarrow BD=CE\)

b) Do AB = AC; AD = AE nên BE = DC

Xét tam giác CEB và BDC có:

CE = BD (cma)

Cạnh BC chung

BC = CD (cmt)

\(\Rightarrow\Delta CEB=\Delta BDC\left(c-c-c\right)\)

c) Do \(\Delta ADB=\Delta AEC\Rightarrow\widehat{EBI}=\widehat{DCI}\)

Do \(\Delta CEB=\Delta BDC\Rightarrow\widehat{BEI}=\widehat{CDI}\)

Xét tam giác BIE và tam giác CID có:

\(\widehat{EBI}=\widehat{DCI}\)

\(\widehat{BEI}=\widehat{CDI}\)

BE = CD

\(\Rightarrow\Delta BIE=\Delta CID\left(g-c-g\right)\)

d) Do \(\Delta BIE=\Delta CID\Rightarrow IB=IC\)

Lại có AB = AC nên IA là trung trực của BC

Vậy IA đi qua trung điểm F của BC hay A, I, F thẳng hàng.

28 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 7 - Học toán với OnlineMath

3 tháng 11 2019

câu trả lời là gì

29 tháng 2 2020

Bài này easy lắm bạn

B A C D E F I Hình ảnh chỉ mang tính chất minh họa

a) Xét \(\Delta\) ABD và \(\Delta\)ACE có

AB = AC ( gt)

\(\widehat{BAC}\) : góc chung

AD = AE ( gt)

=> \(\Delta\)ABD = \(\Delta\) ACE  (c-g-c)

=> BD = CE  ( 2 cạnh tương ứng )

+) Ta có \(\hept{\begin{cases}AB=AC\left(gt\right)\\AE=AD\left(cmt\right)\end{cases}}\)

\(\Rightarrow AB-AE=AC-AD\)

\(\Rightarrow\)BE = CD 

+) Xét \(\Delta\)CEB và \(\Delta\)BDC có

CE = BD ( cmt)

EB = DC ( cmt)

CB: cạnh chung

=> \(\Delta\)CEB = \(\Delta\) BDC  (c-c-c)

2 câu này đã nhé

28 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 7 - Học toán với OnlineMath

31 tháng 12 2018

Hình tự vẽ nak !

a, Xét tam giác OBK và tam giác IBK có:

 ^B1 = ^B2 (Phân giác)

BO = BI (gt)

BK chung

=> Tam giác OBK = tam giác IBK (c.g.c)

b, Vì Tam giác OBK = tam giác IBK (cmt)

=> ^KIB = ^KOB = 90o

=> KI vuông góc BM

c, Vì Tam giác OBK = tam giác IBK

=> KI = KO

Xét tam giác KOA và tam giác KIM có

^K1 = ^K2 (đối đỉnh)

KI = KO (cmt)

^KOA = ^KIM (=90o)

=> tam giác KOA = tam giác KIM(g.c.g)

=> KA = KM

Vậy .......

31 tháng 12 2018

O B M K I A 1 2 1 2

a, Xét tam giác OBK và tam giác IBK có:

 ^B1 = ^B2 (Phân giác)

BO = BI (gt)

BK chung

=> Tam giác OBK = tam giác IBK (c.g.c)

b, Vì Tam giác OBK = tam giác IBK (cmt)

=> ^KIB = ^KOB = 90o

=> KI vuông góc BM

c, Vì Tam giác OBK = tam giác IBK

=> KI = KO

Xét tam giác KOA và tam giác KIM có

^K1 = ^K2 (đối đỉnh)

KI = KO (cmt)

^KOA = ^KIM (=90o)

=> tam giác KOA = tam giác KIM(g.c.g)

=> KA = KM

Vậy .......

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng