Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác AMB và AMD , có:
AM:chung
DAM=MAB
AD=AB(gt)
=> tam giác AMB = AMD (C.G.C.)
=> MB=MD
a) Bạn xét 2 tam giác ABM và tam giác ADM ( c-g-c )
Suy ra BM = DM ( 2 cạnh tương ứng )
b) Xét 2 tam giác AKD và tam giác ACB ( g-c-g )
Suy ra AK = AC ( 2 cạnh tương ứng )
Suy ra tan giác AKC cân tại A
Mấy cái tam giác bằng nhau bạn tự chứng minh
a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔMAD=ΔNAD
=>AM=AN
b: Xét ΔACB có AM/AB=AN/AC
nên MN//BC
c: Xét ΔADE có
AM vừa là đường cao, vừa là trung tuýen
=>ΔADE cân tại A
=>AD=AE
Xét ΔADF có
AN vừa là đường cao, vừa là trung tuyến
=>ΔADF cân tại A
=>AD=AF
=>AE=AF
=>ΔAEFcân tạiA
Xét ΔABM và ΔADM có
AB=AD(gt)
\(\widehat{BAM}=\widehat{DAM}\)(AM là tia phân giác của \(\widehat{BAD}\))
AM chung
Do đó: ΔABM=ΔADM(C-g-c)
Suy ra: MB=MD(Hai cạnh tương ứng) và \(\widehat{ABM}=\widehat{ADM}\)(Hai góc tương ứng)
Ta có: \(\widehat{ABM}+\widehat{EBM}=180^0\)(hai góc kề bù)
\(\widehat{ADM}+\widehat{CDM}=180^0\)(hai góc kề bù)
mà \(\widehat{ABM}=\widehat{ADM}\)(cmt)
nên \(\widehat{EBM}=\widehat{CDM}\)
Xét ΔBME và ΔDMC có
\(\widehat{EBM}=\widehat{CDM}\)(cmt)
MB=MD(cmt)
\(\widehat{BME}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔBME=ΔDMC(g-c-g)
Suy ra: ME=MC(Hai cạnh tương ứng)
Xét ΔMEC có ME=MC(cmt)
nên ΔMEC cân tại M(Định nghĩa tam giác cân)
a) Xét \(\Delta BAM\)và \(\Delta DAM\):
\(DA=BA\)
\(\widehat{BAM}=\widehat{DAM}\)
\(AM\)chung
\(\Rightarrow\Delta BAM=\Delta DAM\left(c.g.c\right)\)
\(\Rightarrow BM=DM\)(hai cạnh tương ứng)
b) \(\Delta BAM=\Delta DAM\Rightarrow\widehat{ABM}=\widehat{ADM}\)(hai góc tương ứng)
Xét \(\Delta BAC\)và \(\Delta DAK\):
\(BA=DA\)
\(\widehat{A}\)chung
\(\widehat{ABM}=\widehat{ADM}\)
\(\Rightarrow\Delta BAC=\Delta DAK\left(g.c.g\right)\)
c) \(\Delta BAC=\Delta DAK\Rightarrow AC=AK\)(hai cạnh tương ứng)
\(\Rightarrow\Delta AKC\)cân tại \(A\).
d) \(\Delta ABC\)có phân giác \(AM\)nên \(\frac{BM}{AB}=\frac{CM}{AC}\)mà \(AB< AC\Rightarrow BM< CM\).
hình các bn tự vẽ nhé(mog các bn thông cảm máy mk ko vẽ dc hình)
a, Xét tam giác BDA và tam giác MDA,có
AD cạnh chung
góc BAD=góc MAD (vì AD là tia phân giác của góc A)
BA=MA(gt)
Do đó tam giác BDA= tam giác MDA(c-g-c)
Suy ra BD=MD(2 cạnh tương ứng)
b,
TA có :góc ABD+góc DBE= 180 độ
góc AMD + góc DMC =180 độ
Mà góc ABD= góc AMD (cmt)
suy ra góc DBE= góc DMC
Xét tam giác BDE và tam giác MDC ,có:
góc BDE=góc MDC(2 góc đối đỉnh)
BD=MD(cmt)
góc DBE= góc DMC(cmt)
Do đó tam giác BDE =tam giác MDC (g-c-c)
s c,d mk đang nghĩ chưa ra kết quả khi nào ra mk giải tiếp heheh thông cảm