K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔANO vuông tại N và ΔBNF vuông tại N có

NA=NB

NO=NF

=>ΔANO=ΔBNF

=>AO=BF và góc NAO=góc NBF

=>AO//BF

b: Xét tứ giác AECO có

P là trung điểm chung của AC và EO

=>AECO là hình bình hành

=>AO//CE và AO=CE; OC//AE và OC=AE

=>FB//CE và FB=CE
Xét tú giác BOCD có

M là trung điểm chung của BC và OD

=>BOCD là hình bình hành

=>BD//OC và BD=OC; OB//DC và OB=DC

=>AE//BD và AE=BD; AF//CD và AF=CD

AE=BD=CO

CD=AF=BO

BF=CE=AO

mà BO=AO=CO

nên AE=BD=CD=AF=BF=CE
=>ĐPCM

a: Xét ΔANO và ΔBNF có

NA=NB

góc ANO=góc BNF

NO=NF

=>ΔANO=ΔBNF

=>AO=BF và góc NAO=góc NBF

=>AO//BF

c: Xét ΔODE có OM/OD=OP/OE

nên MP//DE và MP=1/2DE

Xet ΔBAC có CM/CB=CP/CA=1/2

nên MP//AB và MP=1/2AB

=>DE=AB

Xét ΔODF có OM/OD=ON/OF=1/2

nên MN//FD và MN=1/2FD

Xét ΔBAC có BM/BC=BN/BA=1/2

nên MN//AC và MN=1/2AC

=>FD=AC

Xét ΔOEF có OP/OE=ON/OF=1/2

nên NP//FE và NP=1/2FE

Xét ΔABC có AN/AB=AP/AC

nên NP//BC và NP=1/2BC

=>FE=BC

=>ΔABC=ΔDEF

17 tháng 9 2023

Gọi D là giao điểm của IC và MNE là giao điểm của IA và PNF là giao điểm của IB và PM.

Ta có: Trong tam giác ABC, ba đường phân giác cùng đi qua một điểm và điểm đó cách đều ba cạnh của tam giác hay IM = IN = IP.

Xét tam giác vuông INC và tam giác vuông IMC:

     IC chung;

     IN = IM.

Vậy \(\Delta INC = \Delta IMC\)(cạnh huyền – cạnh góc vuông) nên \(\widehat {MIC} = \widehat {NIC}\)( 2 góc tương ứng).

Tương tự: \(\Delta IPA = \Delta INA\)(cạnh huyền – cạnh góc vuông) nên \(\widehat {PIA} = \widehat {NIA}\)( 2 góc tương ứng).

     \(\Delta IPB = \Delta IMB\)(cạnh huyền – cạnh góc vuông) nên \(\widehat {PIB} = \widehat {MIB}\)( 2 góc tương ứng).

Xét hai tam giác IDN và IDM có:

     ID chung;

     \(\widehat {NID} = \widehat {MID}\);

     IN = IM.

Vậy \(\Delta IDN = \Delta IDM\)(c.g.c)

\(\Rightarrow DN = DM\) ( 2 cạnh tương ứng);

 \(\widehat {IDN} = \widehat {IDM}\) ( 2 góc tương ứng)

Mà  \(\widehat {IDN} + \widehat {IDM}=180^0\) ( 2 góc kề bù)

\(\Rightarrow \widehat {IDN} = \widehat {IDM}= 180^0:2=90^0\).

Suy ra: IC là đường trung trực của cạnh MN.

Tương tự ta có:

IA là đường trung trực của cạnh PN; IB là đường trung trực của cạnh PM.

21 tháng 9 2023

Tham khảo:

Theo giả thiết ta có :

OA = OB, MA = MB ( do M là trung điểm AB )

\( \Rightarrow \) MO là đường trung trực của đoạn thẳng AB

\( \Rightarrow \) MO vuông góc với AB

Theo giả thiết ta có :

OA = OC, PC = PA ( do P là trung điểm AC )

\( \Rightarrow \) PO là đường trung trực của đoạn thẳng AC

\( \Rightarrow \) PO vuông góc với AC

Theo giả thiết ta có :

OC = OB, NC = NB ( do N là trung điểm BC )

\( \Rightarrow \) NO là đường trung trực của đoạn thẳng BC

\( \Rightarrow \) NO vuông góc với BC

22 tháng 6 2020

tự kẻ hình nha:333

a) vì AB là trung trực của DM=> MH=HD( đặt H là giao điểm của AB và DM)

xét tam giác MAB và tam giác  DAB có

MH=HD(cmt)

AHM=AHD(=90 độ)

AH chung

=> tam giác MAB= tam giác DAB(cgc)

=> AM=AD( hai cạnh tương ứng)

vì AC là trung trực của DN=> NK=DK( đặt K là giao điểm của AC và DN)

xét tam giác AKD và tam giác AKN có

DK=NK(cmt)

AKD=AKN(=90 độ)

AK chung

=> tam giác AKD= tam giác AKN( cgc)

=> AN=AD ( hai cạnh tương ứng)

AM=AD(cmt)

=> AM=AN=> tam giác AMN cân A

b) vì E thuộc đường trung trực AB=> EM=ED

vì F thuộc đường trung trực AC=> FD=FN

ta có MN=ME+EF+FN mà EM=ED, FD=FN

=> MN= ED+EF+FD

c) xét tam giác ADF và tam giác ANF có

FD=FN(cmt)

AD=AN(cmt)

AF chung

=> tam giác ADF= tam giác ANF(ccc)

=> ANF=ADF( hai góc tương ứng)

xét tam giác AME và tam giác ADE có

AM=AD(cmt)

AE chung

EM=ED(cmt)

=> tam giác AME= tam giác ADE(ccc)

=> AME=ADE( hai góc tương ứng)

mà AME=ANF( tam giác AMN cân A)

=> ADE=ADF=> AD là p/g của EDF

d) chưa nghĩ đc :)))))))

12 tháng 5 2021

CHUẨN R BN ƠI HỌC THÌ NGU MÀ CHƠI NGU THÌ GIỎI 

1/ Cho tam giác ABC vuông tại A và góc C bằng 30 độ . Vẽ trung trực của AC , cắt AC tại H và BC tại D , nối ADa)Chứng minh tam giác ABD đều(sẵn vẽ hình giúp mình nhé)b)Kẻ phân giác của góc B cắt AD tại K và cắt DH kéo dài I. CM: I là tâm đường tròn đi qua ba đỉnh của tam giác ADC c)Vẽ IE vuông góc với DC; IF vuông góc với AB kéo dài. CM:IF=IE=IK2/ Cho tam giác ABC vẽ AH vuông góc với BC. Gọi I và K lần...
Đọc tiếp

1/ Cho tam giác ABC vuông tại A và góc C bằng 30 độ . Vẽ trung trực của AC , cắt AC tại H và BC tại D , nối AD

a)Chứng minh tam giác ABD đều(sẵn vẽ hình giúp mình nhé)

b)Kẻ phân giác của góc B cắt AD tại K và cắt DH kéo dài I. CM: I là tâm đường tròn đi qua ba đỉnh của tam giác ADC 

c)Vẽ IE vuông góc với DC; IF vuông góc với AB kéo dài. CM:IF=IE=IK

2/ Cho tam giác ABC vẽ AH vuông góc với BC. Gọi I và K lần lượt là hình chiếu của H lên AB và AC. Kéo dài HI một đoạn ID=HI và kéo dài HK một đoạn KE=HK. CM:A nằm trên trung trực của DE( vẽ hình giúp mình nhé các bạn )

3/Cho tam giác ABC cân tại A,M và N là hai điểm tương ứng thuộc hai cạnh AB và AC sao cho BM=AN. Gọi O là điểm cách đều ba đỉnh A,B,C .CM: Ocách đều 2 điểm M và N

4/Trên cạnh AB,BC,AC của tam giác đều ABC . Lấy các điểm theo thứ tự M,N,P sao cho AM=BN=CP.Gọi O là giao điểm của 3 đường trung trực của tam giác ABC . CM: O cũng là giao điểm của ba đường trung trực của tam giác MNP

5/Cho tam giác đều ABC . Trên các cạnh BC,CA,AB lần lượt lất các điểm D,E,F sao cho BD=CE=AF.CM:

a)Tam giác AEF đều

b)Các trung trực của ABC và DEF cùng đi qua một điểm

6/Cho tam giác ABC vuông tại A. Tia phân giác BD và CE cắt nhai tại O 

a)Chứng tỏ O cách đều ba cạnh của tam giác 

b)Từ D và E hạ d8oừng vuông góc xuống BC và cắt CB tại H và K . Tính số đo góc HAk

Mong mọi người vẽ hình và giúp mình giải các bài trên nhé nếu có dài quá thì cho mình xin lỗi

0
31 tháng 5 2019