Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔCDM có
MA=MC
góc AMB=góc CMD
MB=MD
Do đó: ΔABM=ΔCDM
b: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
=>AB//CD
Cho tam giác ABC vuông tại A.Gọi M là trung điểm của AC.Trên tia đối của tia MB lấy điêmr D sao cho MD=MB
a/ Chứng minh tam giác AMD bằng tam giác CMB
b/Chứng minh AD=BC và AD//BC
c/Chứng minh AC vuông góc với CD
d/Đường thẳng đi qua B song song với AC cắt CD tại N . Chứng minh tam giác ABM bằng tam giác CNM
CẢ NHÀ GIÚP EM VỚI, MAI EM NỘP RỒI Ạ
a) CM Tam giac ABM = tam giac CDM
Xét tam giac ABM và Tam giác CDM, ta có:
MA = MC (gt)
MB=MD (gt)
Góc AMB = góc DMC (đđ)
Suy ra Tam giác ABM = Tam giác CDM
b) CM AB song song CD
Ta có: Góc MBA =góc MCD ( cmt)
Mà 2 góc này ở vị trí so le trong, nên suy ra AB//CD
c) CM E là trung điểm AC
Ta có: Tứ giác ABCD có:
M là trung điểm AC gt)
M là trung điểm BD (gt)
Mà AC cắt BD tại M
Suy ra: Tứ giac ABCD là hình bình hành
Ta lại có: MN là trung điểm BC , MN //AB//CD.
Do đó NE cũng //AB//CD , và E cũng là trung điểm của AD.
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
DO đó:ΔABM=ΔCDM
b: Xét tứ giác ABCD có
M là trung điểm của AC
M làtrung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
(Bạn tự vẽ hình giùm)
a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)
DM = BM (gt)
=> \(\Delta ADM\)= \(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)
b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)
=> AC _|_ CD (đpcm)
a )
Xét tam giác ABM và tam giác ACM có:
BM = MC ( vì M là trung điểm của BC )
AM là cạnh chung
AB = AC ( gt )
=> tam giác ABM = tam giác ACM ( c.c.c )
b) Xét tam giác AEH và tam giác CEM có:
EH = EM (gt)
góc AEM = góc MEC (2 góc đối đỉnh )
AE = EC ( vì E là trung điểm của AC )
=> tam giác AEK = tam giác CEM (c.g.c)
c) Câu này giải thích nhiều mà tớ không có thời gian nên không ghi ra được. Tích hay không tùy cậu
a) Xét ΔAMB;ΔCMDΔAMB;ΔCMD có :
AM=MC(gt)AM=MC(gt)
ˆAMB=ˆCMDAMB^=CMD^ (đối đỉnh)
BM=MD(gt)BM=MD(gt)
=> ΔAMB=ΔCMDΔAMB=ΔCMD (c.g.c)
b) Xét ΔAMD;ΔCMBΔAMD;ΔCMB có :
BM=MD(gt)BM=MD(gt)
ˆBMC=ˆDMABMC^=DMA^ (đối đỉnh)
AM=MC(gt)AM=MC(gt)
=> ΔAMD=ΔCMBΔAMD=ΔCMB (c.g.c)
=> {ˆMBC=ˆMDAˆMCB=ˆMAD{MBC^=MDA^M^CB=MAD^ (2 góc tương ứng)
Mà : Các góc này ở vị trí so le trong
=> AD//BC(đpcm)
a) Xét ΔΔBMC và ΔΔDMA có:
BM = DM (gt)
BMCˆBMC^ = DMAˆDMA^ (đối đỉnh)
MC = MA (suy từ gt)
=> ΔΔBMC = ΔΔDMA (c.g.c)
=> BC = DA (2 cạnh tương ứng)
b) Vì ΔΔBMC = ΔΔDMA (câu a)
nên BCAˆBCA^ = CADˆCAD^ (2 góc t ư) và BC = DA (2 cạnh t ư)
Xét ΔΔDCA và ΔΔBAC có:
CA chung
CADˆCAD^ = ACBˆACB^ ( cm trên)
DA = BC (cm trên)
=> ΔΔDCA = ΔΔBAC (c.g.c)
=> DCAˆDCA^ = BACˆBAC^ = 90 độ (góc t ư)
Do đó CD ⊥⊥ AC
c) .................
Giải
a) Xét ΔBMC và ΔDMA có:
BM = DM (gt)
BMC\(\widehat{BMC}\) = \(\widehat{DMA}\)(đối đỉnh)
MC = MA (suy từ gt)
=> ΔBMC = ΔDMA (c.g.c)
=> BC = DA (2 cạnh tương ứng)
b) Vì ΔBMC = ΔDMA (câu a)
nên \(\widehat{BCA}=\widehat{CAD}\)= \(\widehat{CAD}\)(2 góc t ư) và BC = DA (2 cạnh t ư)
Xét ΔDCA và ΔBAC có:
CA chung
\(\widehat{CAD}\)= \(\widehat{ACB}\)(cm trên)
DA = BC (cm trên)
=> ΔDCA = ΔBAC (c.g.c)
=> \(\widehat{DCA}\) = \(\widehat{BAC}\)= 90 \(^0\) (góc t ư)
Do đó CD ⊥ AC
c,Vì BN // AC (gt) => \(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)\(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)
Xét tam giác BND vuông tại N có:
NM là đường trung tuyến ứng vs cạnh huyền BD => NM=\(\frac{1}{2}\)BC=BM
Xét 2 tam giác vuông: ΔABM(\(\widehat{A}\)=90\(^0\))ΔABM(\(\widehat{A}\)=90\(^0\))và ΔCNM(\(\widehat{C}\)=90\(^0\))ΔCNM(\(\widehat{C}\)=90\(^0\)) có:
AM = CM (gt)
NM = BM (cmt)
=> ΔABM=ΔCNM(ch−1cgv) (đpcm)
# mui #
a/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
b) Ta có \(\Delta ABM\)= \(\Delta CDM\)(cm câu a) => \(\widehat{BAC}=\widehat{ACD}\)(hai góc tương ứng bằng nhau ở vị trí so le trong)
=> AB // CD (đpcm)