Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD=BC
b: ta có: ABCD là hình bình hành
nên CD//AB
hay CD\(\perp\)AC
c: Xét tứ giác ABNC có
AB//NC
NB//AC
Do đó: ABNC là hình bình hành
SUy ra: CN=AB
Xét ΔABM vuông tại A và ΔCNM vuông tại C có
AB=CN
AM=CM
Do đó: ΔABM=ΔCNM
a) Xét 2 \(\Delta\) \(AMD\) và \(CMB\) có:
\(AM=CM\) (vì M là trung điểm của \(AC\))
\(\widehat{AMD}=\widehat{CMB}\) (vì 2 góc đối đỉnh)
\(MD=MB\left(gt\right)\)
=> \(\Delta AMD=\Delta CMB\left(c-g-c\right)\)
=> \(AD=BC\) (2 cạnh tương ứng).
b) Xét 2 \(\Delta\) \(BMA\) và \(DMC\) có:
\(BM=DM\left(gt\right)\)
\(\widehat{BMA}=\widehat{DMC}\) (vì 2 góc đối đỉnh)
\(MA=MC\) (vì M là trung điểm của \(AC\))
=> \(\Delta BMA=\Delta DMC\left(c-g-c\right)\)
=> \(\widehat{BAM}=\widehat{DCM}\) (2 góc tương ứng).
Mà \(\widehat{BAM}=90^0\left(gt\right)\)
=> \(\widehat{DCM}=90^0.\)
=> \(CD\perp MC\)
Hay \(CD\perp AC.\)
c) Theo câu b) ta có \(\Delta BMA=\Delta DMC.\)
=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AB\) // \(CD\)
Hay \(AB\) // \(CN.\)
Có:
\(BN\) // \(AC\left(gt\right)\)
\(AB\) // \(CN\left(cmt\right)\)
=> \(AB=CN\) (tính chất đoạn chắn).
Xét 2 \(\Delta\) vuông \(ABM\) và \(CNM\) có:
\(\widehat{BAM}=\widehat{NCM}=90^0\)
\(AB=CN\left(cmt\right)\)
\(AM=CM\) (như ở trên)
=> \(\Delta ABM=\Delta CNM\) (2 cạnh góc vuông tương ứng bằng nhau) (đpcm).
Chúc bạn học tốt!
Huy Hoang tự vẽ hình nhé!
\(a,\) Xét \(\Delta MAC\) và \(\Delta MDC\) ta có:
+) \(MB=MC\) (AM là trung tuyến nên M là trung điểm của BC)
+) \(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
+) \(MA=MB\left(gt\right)\)
\(\Rightarrow\Delta MAC=MDC\Rightarrow\widehat{BAM}=\widehat{CDM}\) Và \(CD=AB< AC\)
Trong \(\Delta ADC:AC< CD\Rightarrow\widehat{ADC}>\widehat{DAC}\left(dpcm1\right)\)
Vì \(\widehat{MAB}=\widehat{MDC}\Rightarrow\widehat{MAB}=\widehat{ADC}>\widehat{MAC}\)
\(\Rightarrow MAB>MAC\)
b, AH vuông với BC tại H
=> H là hình chiếu của A trên BC
HB là đường chiếu tương ứng của đường xiên AB
HC là đường chiếu tương ứng của đường xiên AC
Mà \(AB< AC\Rightarrow HB< HC\left(dpcm3\right)\)
Mặt khác E thuộc AH => HB cũng là đường chiếu của đường xiên EB
HC là hình chiếu của đường xiên EC
Mà \(HB< HC\left(theodpcm3\right)\)
\(\Rightarrow EC< EB\left(dpcm4\right)\)
\(\)
a, theo pytago ta có:
AB2+AC2=BC2 <=> AC=\(\sqrt{10^2-6^2}\)=8 (cm)
so sánh: BAC>ABC>ACB vì BC>AC>AB
b, vì A là trung điểm BD nên CA là trung tuyến của tam giác DBC
mà CA\(\perp\)BD nên CA là đường cao của tam giác DBC
=> CA vừa là trung tuyến vừa là đường cao của tam giác DBC nên DBC cân ở C
Hình vẽ:
A C B E K D
a/ Xét 2Δ vuông:ΔACE và ΔAKE có:
AE: chung
\(\widehat{CAE}=\widehat{KAE}\left(gt\right)\)
=> ΔACE = ΔAKE (ch-gn)
=> AC = AK (đpcm)
b/ Ta có: \(\widehat{CAE}=\widehat{KAE}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^o}{2}=30^o\left(gt\right)\)
mà \(\widehat{B}=30^o\left(180^o-\widehat{C}-\widehat{CAB}\right)\)
=> \(\widehat{KAE}=\widehat{B}=30^o\)
=> \(\Delta EAB\) cân tại E
mà EK _l_ AB (gt)
=> EK cũng là đường trung tuyến của AB(t/c các đường troq Δ cân)
=> KA = KB (đpcm)
c/ Xét \(\Delta EAB\) có:
EK _l_ AB (gt) ; BD _l_ AE kéo dài (gt)
AC _l_ BE ké dài (gt)
=> EK, BD, AC đồng quy tại 1 điểm (đpcm)
đáp án ở đây bạn nha trừ câu c):
https://hoc24.vn/hoi-dap/question/59956.html
a) Ta có: OC=OA+AC
OD=OB+BD
Mà OA=OB và AC=BD (gt)
=>OC=OD
Xét Δ OAD và Δ OBC có:
OA=OB (gt)
ˆOO^ góc chung
OC=OD (cmt)
=> Δ OAD=Δ OBC (c.g.c)
=> AD=BC (2 cạnh tương ứng)
Δ OAD=Δ OBC (cmt)
=> ˆD=ˆCD^=C^ và ˆA1=ˆB1A1^=B1^ (2 góc tương ứng)
Mà ˆA1+ˆA2=ˆB1+ˆB2A1^+A2^=B1^+B2^= 1800 (kề bù)
=> ˆA2=ˆB2A2^=B2^
Δ EAC và Δ EBD có:
ˆC=ˆDC^=D^ (cmt)
AC=BD (gt)
ˆA2=ˆB2A2^=B2^ (cmt)
=> Δ EAC= ΔEBD (g.c.g)
c) Δ EAC=ΔEBD (cmt)
=> EA=EB (2 cạnh tương ứng)
ΔOBE và Δ OAE có:
OB=OA (gt)
ˆB1=ˆA1B1^=A1^ (cmt)
EA=EB (cmt)
=>Δ OBE=Δ OAE (c.g.c)
=> ˆO1=ˆO2O1^=O2^ (2 góc tương ứng)
Vậy OE là phân giác ˆxO
a/ Xét tam giác BEM và tam giác CFM có:
góc BEM = góc CFM = 900 (GT)
BM = MC (AM là trung tuyến t/g ABC)
góc B = góc C (t/g ABC cân)
=> tam giác BEM = tam giác CFM
b/ Ta có: AB = AC (t/g ABC cân)
BE = CF (t/g BEM = t/g CFM)
=> AE = AF
Xét hai tam giác vuông AEM và AFM có:
AE = AF (cmt)
AM: cạnh chung
=> tam giác AEM = tam giác AFM
=> ME = MF
Ta có: AE = AF; ME = MF
=> AM là trung trực của EF
c/ Xét hai tam giác vuông ABD và ACD có:
AB = AC (GT)
AD: cạnh chung
=> tam giác ABD = tam giác ACD
=> BD = CD
Ta có: AB = AC; BD = CD
=> AD là trung trực của EF
Ta có: AM là trung trực của EF
AD là trung trực của EF
=> AM trùng AD
Vậy A;M;D thẳng hàng.
---> đpcm.
a) Xét t/g AMD và t/g CMB có:
AM = MC (gt)
AMD = CMB ( đối đỉnh)
MD = MB (gt)
Do đó, t/g AMD = t/g CMB (c.g.c)
=> AD = BC (2 cạnh tương ứng) (đpcm)
b) Xét t/g BMA và t/g DMC có:
MB = MD (gt)
BMA = DMC ( đối đỉnh)
MA = MC (gt)
Do đó, t/g BMA = t/g DMC (c.g.c)
=> ABM = CDM (2 góc tương ứng)
Mà ABM và CDM là 2 góc ở vị trí so le trong nên AB // CD
Mà AB _|_ AC (gt) => AC _|_ CD hay AC _|_ DN
Có: BN // AC (gt)
AB // CN (cmt)
=> AB = CN ( tính chất đoạn chắn)
Xét t/g ABM vuông tại A và t/g CNM vuông tại C có:
AB = CN (cmt)
AM = CM (gt)
Do đó, t/g ABM = t/g CNM (2 cạnh góc vuông) (đpcm)
A B C G H
a) Ta có:
\(\Delta ABC\) cân tại A => Đường cao AH đồng thời cũng là đường trung tuyến
\(\Rightarrow BH=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Xét \(\Delta ABH\) vuông tại H, ta có:
\(AH^2+BH^2=AB^2\) ( Định lý Py-ta-go )
\(\Rightarrow AH^2=AB^2-BH^2=5^2-3^2=25-9=16\left(=\left(\pm4\right)^2\right)\)
\(\Rightarrow AH=4\left(cm\right)\) (AH>0)
Vậy BH=3 cm; AH=4 cm
Tham khảo hình bài làm đầy đủ :
Câu hỏi của Nguyễn Hoàng Bảo Nhi - Toán lớp 0 | Học trực tuyến
Chúc bn học tốt!
a) Xét ΔAMB;ΔCMDΔAMB;ΔCMD có :
AM=MC(gt)AM=MC(gt)
ˆAMB=ˆCMDAMB^=CMD^ (đối đỉnh)
BM=MD(gt)BM=MD(gt)
=> ΔAMB=ΔCMDΔAMB=ΔCMD (c.g.c)
b) Xét ΔAMD;ΔCMBΔAMD;ΔCMB có :
BM=MD(gt)BM=MD(gt)
ˆBMC=ˆDMABMC^=DMA^ (đối đỉnh)
AM=MC(gt)AM=MC(gt)
=> ΔAMD=ΔCMBΔAMD=ΔCMB (c.g.c)
=> {ˆMBC=ˆMDAˆMCB=ˆMAD{MBC^=MDA^M^CB=MAD^ (2 góc tương ứng)
Mà : Các góc này ở vị trí so le trong
=> AD//BC(đpcm)