Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
DO đó: ΔABE\(\sim\)ΔACF
b: Ta có: ΔABE\(\sim\)ΔACF
nên AB/AC=AE/AF
hay \(AB\cdot AF=AC\cdot AE\)
c: Xét ΔFHB vuông tại F và ΔFAC vuông tại F có
\(\widehat{FBH}=\widehat{FCA}\)
Do đó: ΔFHB\(\sim\)ΔFAC
Suy ra: FH/FA=FB/FC
hay \(FH\cdot FC=FA\cdot FB\)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)
nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
hay \(AE\cdot AC=AB\cdot AF\)
Ta có: \(AE\cdot AC=AB\cdot AF\)(cmt)
nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
Tgiac ABE và ACF có g BAC chung, g AFC=g BEA
=> tg ABE~tg ACF(gg)=> AB/AC=AE/AF
=> AB.AF=AC.AE
Xét tg AEF và ABC có g BAC chung, AE/AF=AB/AC(cm ý a)
=> tg AEF~tgABC(gg)
=> G ABC=g AEF
A B C F E H
a) Xét \(\Delta ABE\)và \(\Delta ACF\)có:
\(\widehat{AEB}=\widehat{AFC}\left(=90\right);\widehat{A}\)chung
\(\Rightarrow\Delta ABE~\Delta ACF\left(g-g\right)\)
b)Theo câu a \(\Rightarrow\frac{AB}{AC}=\frac{AE}{AF}\Rightarrow AF.AB=AE.AC\)