K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

b: Xét ΔABC có 

M là trung điểm của AC

N là trung điểm của AB

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có 

K là trung điểm của GB

I là trung điểm của GC

Do đó: KI là đường trung bình của ΔGBC

Suy ra: KI//BC và \(KI=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra NM//KI và NM=KI

Xét tứ giác NMIK có 

NM//KI

NM=KI

Do đó: NMIK là hình bình hành

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

25 tháng 12 2016

Hình bạn tự vẽ

Giải

a) Xét tứ giác MPQK có PI = IK ( K d/x P qua I)

MI = IQ ( I trung điểm MQ)

==> MPQK hbh

Mà P = 90 độ ( dg trung tuyến tam giác cân đồng thời là dg cao trong tam giác đó)

==> MPQK hcn

b) Để tg MKQP hv thì KP vuông vs MQ ==> M phả = 90 độ ==> tam giác MNQ vuông cân

a) Xét tứ giác AKCH có : 

AD = DC ( D là trung điểm AC )

HD = DK ( K là điểm đối xứng của H qua D )

=> AKCH là hình bình hành (1)

Xét ∆ vuông AHC có : 

HD là trung truyến 

=> HD = AD = DC 

Mà HD + DK = HK 

AD + DC = AC 

=> HK = AC (2)

Từ (1) và (2) => AKCH là hình chữ nhật 

b) Xét ∆ABC có : 

E là trung điểm AB 

D là trung điểm BC 

=> ED là đường trung bình ∆ABC 

=> ED //BC

Xét ∆ABC có : 

E là trung điểm AC

I là trung điểm BC

=> EI là đường trung bình ∆ABC 

=> EI//AC , EI = \(\frac{1}{2}AC\)

Xét tứ giác EDCI có :

ED// IC ( I \(\in\)BC )

EI//DC ( D \(\in\)AC)

=> EDCI là hình bình hành 

c) Vì ED //HI ( H , I \(\in\)BC )

=> EDIH là hình thang

Vì EI = \(\frac{1}{2}AC\)(cmt)

Mà HD = AD = DC (cmt)

=> HD = \(\frac{1}{2}AC\) 

=> EI = HD 

Mà EDIH là hình thang 

=> EDIH là hình thang cân ( 2 đường chéo bằng nhau )

10 tháng 5 2020

Phần d có ai làm được không ạ?

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc 

Giúp mình với ạ mình đang cần gấpBài toán 1: Cho tam giác ABCD nhọn, đường cao AH. Các điểm M, N, P, Q lần lượt là trung điểm của các đoạn thẳng AB, AC, CH, BH:a) CM: NP // MQb) CM rẳng MNPQ là hình chữ nhậtc) Tìm điều kiện của tam giác ABC để tứ giác MNPQ là hình vuông Bài toán 2: Cho hình thoi MNPQ, gọi I là giao điểm của hai đường chéo. Vẽ đường thăng qua M song song với NQ, vẽ đường thăng...
Đọc tiếp

Giúp mình với ạ mình đang cần gấp

Bài toán 1: Cho tam giác ABCD nhọn, đường cao AH. Các điểm M, N, P, Q lần lượt là trung điểm của các đoạn thẳng AB, AC, CH, BH:

a) CM: NP // MQ

b) CM rẳng MNPQ là hình chữ nhật

c) Tìm điều kiện của tam giác ABC để tứ giác MNPQ là hình vuông

 

Bài toán 2: Cho hình thoi MNPQ, gọi I là giao điểm của hai đường chéo. Vẽ đường thăng qua M song song với NQ, vẽ đường thăng qua N song song với MP. Hai đường thăng đó cắt nhau tại A.

a) Tứ giác AMIN là hình gì? Vì sao? 

b) Chứng minh rằng : AI = MQ. c) Tìm điều kiện của hình thoi MNPQ để tứ giác AMIN là hình vuông. 

 

Bài toán 3 : Cho AH là đường cao của hình thang cân ABCD (AB // CD ; AB < CD). Lấy điểm M sao cho CM = AB. Gọi K là điểm đối xứng với A qua H. 

a) Chứng minh : Tứ giác ABCM là hình bình hành. 

b) Chứng minh : ADKM là hình thoi. 

c) Gọi E, F lần lượt là hình chiếu của A trên KD và KM. Chứng minh EF // CD. 

d) Chứng minh rằng : Nếu tứ giác ADKM trở thành hình vuông thì AD I CB.:

0