Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
của cj nó
Thấy tao thông minh chưa hả ? Học tập theo tao nè
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
góc AMC=90 độ
Do đó: AMCKlà hình chữ nhật
b: Xét tứ giác AKMB có
AK//MB
AK=MB
Do đó: AKMB là hình bình hành
a. Tứ giác AMCK là HBH ( vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường ) và có góc M = 900 ( vì AM là đường trung trực của D cân cũng là đường cao) nên tứ giác AMCK là HCN.
b. Diện tích của hình chữ nhật biết AM = 12cm, MC = 5cm là :
SAMCK = 12. 5 = 60cm2
c. Để AMCK là HV thì cần AM = MC
khi đó ΔABC phải là tam giác vuông cân tại A để đường trung trực ứng với cạnh huyền bằng nửa cạnh huyền hay AM = MC.
HÌNH VẼ NHƯ CỦA BẠN PHÙNG KHÁNH LINH NHÉ!!!!!1
a) Xét tứ giác AKCM có:
MI = MK (K là điểm đối xứng với M qua I (gt))
IA = IC (I là trung điểm AC (gt))
AC giao MK tại I
\(\Rightarrow\)AMCK là hình bình hành (dhnb) (1)
Vì \(\Delta ABC\) cân tại A (gt)
AM là đường trung tuyến (gt)
\(\Rightarrow\) AM cũng là đường cao (t/c)
\(\Rightarrow\)\(\widehat{AMK} = 90^O\)(2)
Từ (1)(2) \(\Rightarrow\) AKCM là hình chữ nhật (dhnb)
b) Ta có công thức tính diện tích hình chữ nhật là:
\(S=a\cdot b\)
trong đó a là chiều dài (=AM=12cm)
b là chiều rộng (=MC=5cm)
\(\Rightarrow\) SAMCK = 12 * 5 = 60 (cm2)
c) Để AMCK là hình vuông
\(\Leftrightarrow\) AMCK vừa là hình chữ nhật, vừa là hình thoi
mà AMCK là hình chữ nhật (cmt)
Vậy ta cần tìm điều kiện để AMCK là hình thoi
Để AMCK là hình thoi
\(\Leftrightarrow\) AM = MC
mà \(MC=\frac{1}{2}BC\) (AM là đường trung tuyễn của \(\Delta ABC\)(gt))
\(\Leftrightarrow\) \(AM=\frac{1}{2}BC\)
\(\Leftrightarrow\) \(\Delta ABC\) vuông tại A (tính chất về đường trung tuyến ứng với cạnh huyền)
\(\Leftrightarrow\)\(\Delta ABC\) vuông cân tại A
Vậy muốn tứ giác AMCK là hình vuông thì \(\Delta ABC\) phải vuông cân tại A
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
góc AMC=90 độ
Do đo: AMCK là hình chữ nhật
b: Xét tứ giác AKMB có
AK//MB
AK=MB
Do đó: AKMB là hình bình hành
=>AB=MK
c: Để AMCK là hìh vuông thì AM=CM=BC/2
=>ΔABC vuông tại A
d: P=(5+5+6)/2=8
\(S=\sqrt{8\left(8-6\right)\left(8-5\right)\left(8-5\right)}=\sqrt{16\cdot9}=12\left(cm^2\right)\)
a) Xét tứ giác AKCM có:
IA = IC (I là trung điểm AC (gt))
IM = IK (K đối xứng với M qua I (gt))
AC giao MK tại I
\(\Rightarrow\)Tứ giác AKCM là hình bình hành (dhnb) (1)
Xét \(\Delta AMC\) có \(\widehat{AMC} = 90^0\)
MI là đường trung tuyến (I là trung điểm AC (gt))
\(\Rightarrow MI=\frac{1}{2}AC\) (Đường trung tuyến ứng với cạnh huyền)
mà \(MI=\frac{1}{2}MK\)
\(\Rightarrow\) MK = AC (2)
Từ (1)(2)
\(\Rightarrow\) Tứ giác AKCM là hình chứ nhật
b) Do AM là đường trung tuyến (gt)
\(\Rightarrow\) \(MC=\frac{1}{2}BC=\frac{1}{2}\cdot10=5\left(cm\right)\)
Xét \(\Delta AMC\) có \(\widehat{AMC} = 90^0\)
\(\Rightarrow AC^2=AM^2+MC^2\Rightarrow AM=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)
\(\Rightarrow\)Diện tích tam giác ABC = \(\frac{25\sqrt{3}}{2}\left(cm^2\right)\)
c) Để hình chữ nhật AMCK là hình vuông
\(\Leftrightarrow AM=MC\) (Vì \(MC=\frac{1}{2}BC\))
\(\Leftrightarrow AM=\frac{1}{2}BC\)
\(\Leftrightarrow\) Tam giác ABC vuông tại A (vì tam giác ABC cân tại A)
\(\Leftrightarrow\) Tam giác ABC vuông cân tại A
Hình bạn tự vẽ
Giải
a) Xét tứ giác MPQK có PI = IK ( K d/x P qua I)
MI = IQ ( I trung điểm MQ)
==> MPQK hbh
Mà P = 90 độ ( dg trung tuyến tam giác cân đồng thời là dg cao trong tam giác đó)
==> MPQK hcn
b) Để tg MKQP hv thì KP vuông vs MQ ==> M phả = 90 độ ==> tam giác MNQ vuông cân