Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc EFP=1/2*180=90 độ
góc NMP=góc NFP=90 độ
=>NMFP nội tiếp
b: NMFP nội tiếp
=>góc MNP=góc MFP
a) ta có \(\widehat{AMB}=\widehat{AKB}=90^0\)( góc nội tiếp chắn nửa (O)
=>\(\widehat{AKB}+\widehat{BIE}=90^0+90^0=180^0\)
=> Tứ giác IEKB nội tiếp đường tròn
b)+)Ta có \(AB\perp MN\)tại \(\widebat{AM}=\widebat{AN}\)
=>\(\widehat{AME}=\widehat{AKM}\)( 2 góc nội tiếp cùng chắn 2 cung bằng nhau)
tam giác AME zà tam giác AKM có\(\widehat{MAK}\)chung
\(\widehat{AME}=\widehat{AKM}\left(cmt\right)\)
=> tam giác AME = tam giác AKM(g.g)
=>\(\frac{AM}{AK}=\frac{AE}{AM}=AM^2=AE.AK\)
+) ta có \(\widehat{AMB}=90^0\)(góc nội tiếp chắn nửa đường tròn , áp dụng hệ thức lượng trong tam giác zuông có
\(MB^2=BỊ.AB\)
Dó đó\(AE.AK+BI.AB=MA^2+MB^2=AB^2=4R^2\)(do tam giác AMB zuông tại H )
c) ..........
Mừng quá. Xong hết rồi. Hơn nửa tiếng bây giờ cũng được đền đáp =))
a) MB = MC (=MA) (giao điểm 2 tiếp tuyến cách đều tiếp điểm)
b) MA = MB = MC => T/g ABC vuông tại A => ^A = 90
T/g OAB cân tại O, có OM là đ/phân giác nên OM cũng là đ cao hay ^ANM = 90
Tương tự, ^APM = 90
=> đpcm
c) MO'/MO = O'C/BM (CMO' ~ BOM) = O'C/CM = CP/MP (CMO' ~ PMC) = MN/MP (PMC = NBM góc vuông - cạnh huyền - góc nhọn so le trong)
=> đpcm
d) Trong t/g vuông OMO' có MA là đường cao, OM^2 = OA.OO' <=> OM = 20 => BM = 12 (Pytago) => BC = 24
e) Dùng ta lét tìm ra OE, EC, còn OC tìm theo pytago trong t/g vuông OBC
f) ABKC là hình chữ nhật => AK cắt BC tại trung điểm M => đpcm
a) Xét (O) có
ΔNDP nội tiếp đường tròn(N,D,P∈(O))
NP là đường kính của (O)(gt)
Do đó: ΔNDP vuông tại D(Định lí)
⇒ND⊥DP tại D
hay ND⊥MP(đpcm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔNMP vuông tại N có ND là đường cao ứng với cạnh huyền MP, ta được:
MN2=MD⋅MPMN2=MD⋅MP(đpcm)
b) Vì N,E∈(O) và N,O,E không thẳng hàng
nên NE là dây của (O)
Xét (O) có
OM là một phần đường kính
NE là dây(cmt)
OM⊥NE tại H(gt)
Do đó: H là trung điểm của NE(Định lí đường kính vuông góc với dây)(đpcm)