K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc EFP=1/2*180=90 độ

góc NMP=góc NFP=90 độ

=>NMFP nội tiếp

b: NMFP nội tiếp

=>góc MNP=góc MFP

23 tháng 4 2018

Ai giúp em với ạ 

17 tháng 3 2020

đợi chút đnag làm nha 

hì hì

#

17 tháng 3 2020

a) ta có \(\widehat{AMB}=\widehat{AKB}=90^0\)( góc nội tiếp chắn nửa (O)

=>\(\widehat{AKB}+\widehat{BIE}=90^0+90^0=180^0\)

=> Tứ giác IEKB nội tiếp đường tròn

b)+)Ta có \(AB\perp MN\)tại \(\widebat{AM}=\widebat{AN}\)

=>\(\widehat{AME}=\widehat{AKM}\)( 2 góc nội tiếp cùng chắn 2 cung bằng nhau)

tam giác AME zà tam giác AKM có\(\widehat{MAK}\)chung

                                                          \(\widehat{AME}=\widehat{AKM}\left(cmt\right)\)

=> tam giác AME = tam giác AKM(g.g)

=>\(\frac{AM}{AK}=\frac{AE}{AM}=AM^2=AE.AK\)

+) ta có \(\widehat{AMB}=90^0\)(góc nội tiếp chắn nửa đường tròn , áp dụng hệ thức lượng trong tam giác zuông có

\(MB^2=BỊ.AB\)

Dó đó\(AE.AK+BI.AB=MA^2+MB^2=AB^2=4R^2\)(do tam giác AMB zuông tại H )

c) ..........

31 tháng 7 2015

Mừng quá. Xong hết rồi. Hơn nửa tiếng bây giờ cũng được đền đáp =))

a) MB = MC (=MA) (giao điểm 2 tiếp tuyến cách đều tiếp điểm)

b) MA = MB = MC => T/g ABC vuông tại A => ^A = 90

T/g OAB cân tại O, có OM là đ/phân giác nên OM cũng là đ cao hay ^ANM = 90

Tương tự, ^APM = 90

=> đpcm

c) MO'/MO = O'C/BM (CMO' ~ BOM) = O'C/CM = CP/MP (CMO' ~ PMC) = MN/MP (PMC = NBM góc vuông - cạnh huyền - góc nhọn so le trong)

=> đpcm

d) Trong t/g vuông OMO' có MA là đường cao, OM^2 = OA.OO' <=> OM = 20 => BM = 12 (Pytago) => BC = 24

e) Dùng ta lét tìm ra OE, EC, còn OC tìm theo pytago trong t/g vuông OBC

f) ABKC là hình chữ nhật => AK cắt BC tại trung điểm M => đpcm

13 tháng 9 2018

Tại sao phải chứng minh khi nhìn vào đã biết

4 tháng 1 2021

a) Xét (O) có 

ΔNDP nội tiếp đường tròn(N,D,P∈(O))

NP là đường kính của (O)(gt)

Do đó: ΔNDP vuông tại D(Định lí)

⇒ND⊥DP tại D

hay ND⊥MP(đpcm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔNMP vuông tại N có ND là đường cao ứng với cạnh huyền MP, ta được: 

MN2=MD⋅MPMN2=MD⋅MP(đpcm)

b) Vì N,E∈(O) và N,O,E không thẳng hàng

nên NE là dây của (O)

Xét (O) có 

OM là một phần đường kính

NE là dây(cmt)

OM⊥NE tại H(gt)

Do đó: H là trung điểm của NE(Định lí đường kính vuông góc với dây)(đpcm)