Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có hình không bạn? Mình đang bí về cái hình của bài này vẽ sao á.
a. Xét 2 TG AMC và DMB, ta có:
AM=DM(M là tđiểm của AD); BM=CM(Mlaf tđiểm BC); BMD=AMC(2 góc Đối đỉnh)
=>TG AMC=TG DMB(c.g.c)
b. Xét 2 TG AMB và CMD, ta có:
AM=DM(gt);BM=CM(gt); AMB=CMD(đđ)
=>TG AMB=TG CMD(c.g.c)
=>BAM=CDM(2 góc tương ứng)
mà chúng lại ở vị trí slt=>AB//CD.
c. sory!!! I don't know
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
a) Xét tam giác vuông ABC, áp dụng định lý Pi-ta-go ta có:
\(AC^2+AB^2=BC^2\)
\(\Rightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)
\(\Rightarrow AC=12\left(cm\right)\)
b) Xét tam giác vuông ABD và tam giác vuông EBD có:
BA = BE (gt)
Cạnh BD chung
\(\Rightarrow\Delta ABD=\Delta EBD\) (Cạnh huyền - cạnh góc vuông)
c) Xét tam giác vuông BEH và tam giác vuông BAC có:
Góc B chung
BE = BA
\(\Rightarrow\Delta BEH=\Delta BAC\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow BH=BC\) hay tam giác HBC cân tại B.
Bài giải :
a) Xét tam giác vuông ABC, áp dụng định lý Pi-ta-go ta có:
AC2+AB2=BC2
⇒AC2=BC2−AB2=152−92=144
⇒AC=12(cm)
b) Xét tam giác vuông ABD và tam giác vuông EBD có:
BA = BE (gt)
Cạnh BD chung
⇒ΔABD=ΔEBD (Cạnh huyền - cạnh góc vuông)
c) Xét tam giác vuông BEH và tam giác vuông BAC có:
Góc B chung
BE = BA
⇒ΔBEH=ΔBAC (Cạnh góc vuông và góc nhọn kề)
⇒BH=BC hay tam giác HBC cân tại B.
a) Xét tam giác DBM và tam giác ABM có:
BM: là cạnh huyền (vừa cạnh chung)
^MDB = ^MAB = 90o
^DBM = ^ABM (giả thiết do BM là tia phân giác)
\(\Rightarrow\)\(\Delta\)DBM = \(\Delta\) ABM (cạnh huyền - góc nhọn)
\(\Rightarrow\) AB = BD
b) Xét \(\Delta\) ABC và \(\Delta\) DBE có:
AB = BD (CMT)
^B chung
^BAC = ^EDB = 90o
\(\Rightarrow\) \(\Delta\) ABC = \(\Delta\) DBE (cạnh góc vuông - góc nhọn kề cạnh ấy)
c) (không chắc nha). Từ đề bài suy ra ^NHM = ^NKM = 90o (kề bù với ^DHM = ^AKM = 90o, giả thiết)
Từ đó, ta có N cách đều hai tia MH, MK nên nằm trên đường phân ^HMK hay MN là tia phân giác ^HMK.
d)(không chắc luôn:v) Ta sẽ chứng minh BN là tia phân giác ^ABC.
Thật vậy, từ N, hạ NF vuông góc BC, hạ NG vuông góc với AB.
Đến đấy chịu, khi nào nghĩ ra tính tiếp.
a)Xét ∆ vuông BAM và ∆ vuông BDM ta có :
BM chung
ABM = DBM ( BM là phân giác)
=> ∆BAM = ∆BDM ( ch-gn)
=> BA = BD
AM = MD
b)Xét ∆ vuông ABC và ∆ vuông DBE ta có :
BA = BD
B chung
=> ∆ABC = ∆DBE (cgv-gn)
c) Xét ∆ vuông AKM và ∆ vuông DHM ta có :
AM = MD( cmt)
AMK = DMH ( đối đỉnh)
=> ∆AKM = ∆DHM (ch-gn)
=> MAK = HDM ( tương ứng)
Xét ∆AMN và ∆DNM ta có :
AM = MD
MN chung
MAK = HDM ( cmt)
=> ∆AMN = ∆DNM (c.g.c)
=> DNM = ANM ( tương ứng)
=> MN là phân giác AND
d) Vì MN là phân giác AND
=> M , N thẳng hàng (1)
Vì BM là phân giác ABC
=> B , M thẳng hàng (2)
Từ (1) và (2) => B , M , N thẳng hàng
a, Xét tam giác MNF và tam giác KNF ta có:
MN = NK
\(\widehat{MNF}=\widehat{KNF}\)
NF chung
--> \(\Delta MNF=\Delta KNF\)̣̣\((c.g.c)\)
b. Ta có : \(\Delta MNF=\Delta KNF\)
--> \(\widehat{NMF=}\widehat{NKF}=90^0\)
Xét tam giác NPD có:
\(PM\perp ND\)
\(DK\perp PN\)
PM cắt DK tại F
--> F là trực tâm của tam giác NPD
--> \(NF\perp PD\)
chưa học trực tâm đâu :))
P M N F I D
△MNP (M = 90o). PNF = FNM = PNM/2 ; (F MP)
K NP: NK = NM. {D} = KF ∩ NM
a, △NFM = △NFK
b, NF ⊥ PD
Bg:
a, Xét △NFM và △NFK
Có: MN = NK (gt)
FNM = PNF (gt)
NF là cạnh chung
=> △MNF = △KNF (c.g.c)
b, Gọi { I } = NF ∩ PD
Vì △MNF = △KNF (cmt) => MF = KF (2 cạnh tương ứng)
Và FMN = FKN (2 góc tương ứng)
Mà FMN = 90o
=> FKN = 90o
Xét △PFK vuông tại K và △DFM vuông tại M
Có: KF = FM (cmt)
PFK = DFM (2 góc đối đỉnh)
=> △PFK = △DFM (cgv-gn)
=> PK = DM (2 cạnh tương ứng)
Ta có: NP = PK + KN và DN = DM + MN
Mà PK = DM (cmt) ; NK = MN (gt)
=> NP = DN
Xét △IPN và △IDN
Có: NP = DN (cmt)
ENI = IND (gt)
IN là cạnh chung
=> △IPN = △IDN (c.g.c)
=> PIN = DIN (2 góc tương ứng)
Mà PIN + DIN = 180o (2 góc kề bù)
=> PIN = DIN = 180o/2 = 90o
=> IN ⊥ PD
Mà { I } = NF ∩ PD
=> NF ⊥ PD (đpcm)