Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét t.giác ADB và t.giác AEC có:
AB=AC(gt)
\(\widehat{A}\)chung
=> \(\Delta\)ADB=\(\Delta\)AEC(CH-GN)
b,vì \(\widehat{B}\)=\(\widehat{C}\)(tam giác ABC cân tại A) mà \(\widehat{ABD}\)=\(\widehat{ACE}\)(theo câu a)
=>\(\widehat{OBC}\)=\(\widehat{OCB}\)
=>t.giác BOC cân tại O
c,vì AE=AD(theo câu a) suy ra t.giác AED cân tại A => \(\widehat{AED}\) =\(\widehat{ADE}\)mà t.giác ABC cx cân tại=>\(\widehat{B}\)=\(\widehat{C}\)
=> \(\widehat{AED}\)=\(\widehat{B}\)mà 2 góc này ở vị trí đồng vị nên => ED//BC
d, ta có
A B C O E D M
Cm: a) Xét t/giác ADB và t/giác AEC
có góc ADB = góc AEC = 900 (gt)
AB = AC (gt)
góc A : chung
=> t/giác ADB = t/giác AEC (ch - gn)
b) Ta có : t/goác ADB = t/giác AEC (cmt)
=> góc ABD = góc ACE (hai góc tương ứng)
Mà góc B = góc ABD + góc DBC
góc C = góc ACE + góc ECB
Và góc B = góc C (vì t/giác ABC cân)
=> góc DBC = góc ECB
hay góc OBC = góc OCB
=> t/giác BOC cân tại O
c) ta có: t/giác ADB = t/giác AEC (cm câu a)
=> AE = AD (hai cạnh tương ứng)
=> t/giác AED là t/giác cân tại A
=> góc AED = góc ADE = \(\frac{180^0-\widehat{A}}{2}\)(1)
Ta lại có: t/giác ABC cân tại A
=> góc B = góc C = \(\frac{180^0-\widehat{A}}{2}\)(2)
Từ (1) và (2) suy ra góc AED = góc ADE = góc B = góc C
Mà góc AED và góc B ở vị trí đồng vị
=> ED // BC (Đpcm)
d) ko Cm đc
A B C D E M O
a)Xét hai tam giác vuông:\(\Delta ADB\)và \(\Delta AEC\)có:
AB=AC(vì \(\Delta ABC\)cân tại A)
\(\widehat{A}\)chung
Do đó:\(\Delta ADB=\Delta AEC\)(cạnh huyền-góc nhọn)
b)Vì \(\Delta ADB=\Delta AEC\)(câu a) nênAD=AE(hai cạnh tương ứng)
Ta có:AD+DC=AC
AE+EB=AB
Mà AD=AE(cmt), AB=AC(gt)
=>DC=EB
Xét hai tam giác vuông:\(\Delta OEB\)và \(\Delta ODC\)có
EB=DC(cmt)
\(\widehat{EOB}=\widehat{DOC}\)(đối đỉnh)
Do đó: \(\Delta OEB=\Delta ODC\)(cạnh góc vuông-góc nhọn)
=>OB=OC(hai cạnh tương ứng)
=>\(\Delta BOC\)cân tại O
c)\(\Delta AED\)có AD=AE (câu b)
=>\(\Delta AED\)cân tại A
\(\Rightarrow\widehat{E}=\widehat{D}=\frac{180^0-\widehat{A}}{2}\left(1\right)\)
\(\Delta ABC\)cân tại A(gt)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{D}=\widehat{C}\)
Mà hai góc này nằm ở vị trí đồng vị
=>ED//BC
Câu d bn xem lại đề bài nhé!
~~~~~~~~~~~~~~~~~~~~~~Học tốt~~~~~~~~~~~~~~~~~~~~
Theo đề, ta có:
\(\dfrac{a+b-c}{3c}=\dfrac{b+c-a}{3a}=\dfrac{c+a-b}{3b}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a+b-c}{3c}=\dfrac{b+c-a}{3a}=\dfrac{c+a-b}{3b}=\dfrac{a+b-c+b+c-a+c+a-b}{3c+3a+3b}=\dfrac{a+b+c}{3c+3a+3b}\)
\(=\dfrac{a+b+c}{3.\left(a+b+c\right)}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{a+b-c}{3c}=\dfrac{1}{3}\Rightarrow a+b-c=\dfrac{3c}{3}=c\Rightarrow a+b=2c\)
và \(\dfrac{b+c-a}{3a}=\dfrac{1}{3}\Rightarrow b+c-a=\dfrac{3a}{3}=a\Rightarrow b+c=2a\)
và \(\dfrac{c+a-b}{3b}=\dfrac{1}{3}\Rightarrow c+a-b=\dfrac{3b}{3}=b\Rightarrow c+a=2b\)
\(\Rightarrow P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\left(\dfrac{a+b}{a}\right)\left(\dfrac{c+a}{c}\right)\left(\dfrac{b+c}{b}\right)\)
\(=\left(\dfrac{2c}{a}\right)\left(\dfrac{2b}{c}\right)\left(\dfrac{2c}{b}\right)=\dfrac{2c.2a.2b}{a.b.c}=8\)
Vậy P = 8
Đề bị thiếu rồi bạn.
Số đô bằng nấy rùi thì yêu cầu làm gì nữa bạn
# chúc bạn học tốt #