Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét △EBC vuông tại E có: BC2 = BE2 + EC2 (định lý Pytago)
=> BC2 = 32 + 42 => BC2 = 25 => BC = 5 (cm)
Vì BD là phân giác EBC
\(\Rightarrow\frac{ED}{BE}=\frac{DC}{BC}\)\(\Rightarrow\frac{ED}{3}=\frac{DC}{5}=\frac{ED+DC}{3+5}=\frac{EC}{8}=\frac{4}{8}=\frac{1}{2}\)(Áp dụng tính chất dãy tỉ số bằng nhau)
Do đó: \(\frac{ED}{3}=\frac{1}{2}\)\(\Rightarrow ED=\frac{3}{2}=1,5\)(cm)
\(\frac{DC}{5}=\frac{1}{2}\)\(\Rightarrow DC=\frac{5}{2}=2,5\)(cm)
b, Xét △EBC vuông tại E và △HBE vuông tại H
Có: EBC là góc chung
=> △EBC ᔕ △HBE (g.g)
=> \(\frac{EB}{HB}=\frac{BC}{BE}\)
=> EB . EB = HB . BC
=> EB2 = BH . BC
c, Xét △BED vuông tại E và △BHI vuông tại H
Có: EBD = HDI (gt)
=> △BED ᔕ △BHI (g.g)
=> BDE = BIH (2 góc tương ứng)
Mà BIH = DIE (2 góc đối đỉnh)
=> BDE = DIE
=> IDE = DIE
=> △EDI cân tại E
d, cm gì??
A B C D E 6 H
a) BC = \(\sqrt{AB^2+AC^2}\)= \(\sqrt{6^2+8^2}\)= \(\sqrt{100}\)= 10 (theo định lí Pythagoras)
\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)= \(\frac{CD}{BC}\)= \(\frac{AD}{DC}\)= \(\frac{AB}{BC}\)= \(\frac{6}{10}\)= \(\frac{3}{5}\).
b) Ta có : \(\widehat{ABE}\)= \(\widehat{EBC}\)(BD là phân giác)
=> \(\Delta ABD\)~ \(\Delta EBC\)(gg)
=> \(\frac{BD}{BC}\)= \(\frac{AD}{EC}\)<=> BD.EC = AD.BC (đpcm).
c) Ta có : \(\Delta CHE\)~ \(\Delta CEB\)( 2 tam giác vuông có chung góc C )
=> \(\frac{CH}{CE}\)= \(\frac{CE}{CB}\)<=> CH.CB = CE2 (1)
\(\Delta CDE\)~ \(\Delta BDA\)(gg (2 góc đối đỉnh))
\(\Delta BDA~\Delta BCE\) (câu b))
=> \(\Delta CDE~\Delta BCE\)
=> \(\frac{CE}{BE}\)= \(\frac{DE}{CE}\)<=> BE.DE = CE2 (2)
Từ (1) và (2) => CH.CB = ED.EB (đpcm).
A B C H D E
a) Xét tam giác HBA và tam giác ABC có:
Góc B chung
\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)
\(\Rightarrow\frac{HB}{AB}=\frac{AB}{CB}\Rightarrow AB^2=BH.BC\)
b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có:
\(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
Áp dụng tính chất tia phân giác trong tam giác ta có:
\(\frac{AD}{DC}=\frac{AB}{BC}=\frac{12}{20}=\frac{3}{5}\)
mà AD + DC = AC = 16 cm nên \(AD=6cm.\)
c) Xét tam giác BEA và tam giác BDC có:
\(\widehat{ABE}=\widehat{CBD}\) (BD là tia phân giác)
\(\widehat{BAE}=\widehat{BCD}\) (Cùng phụ với góc \(\widehat{ABC}\) )
\(\Rightarrow\Delta BEA\sim\Delta BDC\left(g-g\right)\)
\(\Rightarrow\frac{BE}{BD}=\frac{AB}{CB}\)
Lại có \(\frac{AB}{CB}=\frac{AD}{DC}\Rightarrow\frac{BE}{BD}=\frac{AD}{DC}\Rightarrow\frac{DB}{EB}=\frac{DC}{DA}\)
Bài giải :
a) Xét tam giác HBA và tam giác ABC có:
Góc B chung
^BHA=^BAC(=90o)
⇒ΔHBA∼ΔABC(g−g)
⇒HBAB =ABCB ⇒AB2=BH.BC
b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có:
BC=√AB2+AC2=20(cm)
Áp dụng tính chất tia phân giác trong tam giác ta có:
ADDC =ABBC =1220 =35
mà AD + DC = AC = 16 cm nên AD=6cm.
c) Xét tam giác BEA và tam giác BDC có:
^ABE=^CBD (BD là tia phân giác)
^BAE=^BCD (Cùng phụ với góc ^ABC )
⇒ΔBEA∼ΔBDC(g−g)
⇒BEBD =ABCB
Lại có ABCB =ADDC ⇒BEBD =ADDC ⇒DBEB =DCDA