K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2017

a) 6,9cm 

b) góc DEF<góc DFE

c) xét tam giác DEF và tam giác DEK có:

         KD=DF

         GÓC KDE=góc EDF

         DE cạnh chung

Do đó tam giác DEF= tam giác DEK

bài này dễ òm

9 tháng 3 2017

a) Tam giác DEF vuông tại D có:

EF2=DE2+DF2 (định lý pytago)

82=DE2+42

=> DE2=82-42=64-16=48(cm)

=>DE2= căn 48 (xấp xỉ) 6.9

b) Ta có: DE<EF (6.9<8)

     => góc E > góc F (quan hệ góc và cạnh đối diện trong 1 tam giác)

=> góc DEF > góc DFE

c) Xét tam giác DEF và tam giác DEK, có: DK=DF( vì D là trung điểm )

                  ED là cạnh chung

                                                => tam giác DEF = tam giác DEK (2 cạnh góc vuông) 

a: \(DE=\sqrt{8^2-4^2}=4\sqrt{3}\left(cm\right)\)

b: Xét ΔDEF có DF<DE

nên \(\widehat{E}< \widehat{F}\)

c: Xét ΔDEF vuông tại D và ΔDEK vuông tại D có

DE chung

DF=DK

Do đó: ΔDEF=ΔDEK

10 tháng 9 2015

ở trong câu hỏi tương tự có đó bạn                

BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.a) Chứng minh: Tam giác ABM = tam giác ACM.b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.Chứng minh: BH = CK.c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.Chứng minh: Tam giác IBM cân.BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.a) Tính độ dài cạnh AC.b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED...
Đọc tiếp

BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.

a) Chứng minh: Tam giác ABM = tam giác ACM.

b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.

Chứng minh: BH = CK.

c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.

Chứng minh: Tam giác IBM cân.

BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.

a) Tính độ dài cạnh AC.

b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED cắt tia BA tại F.

Chứng minh: DC = DF.

c) Chứng minh: AE song song FC. ( AE // FC )

BÀI 3: Cho tam giác ABC cân tại A. ( A^ < 90* ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.

a) Chứng minh: Tam giác ABD = tam giác ACE.

b) Chứng minh: Tam giác AED cân.

c) Chứng minh: AH là đường trung trực của ED.

b) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.

Chứng minh: ECB^ = DKC^.

#helpme

#mainopbai

 

 

5
24 tháng 4 2017

Bài 3

a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có

AB=AC( vì tam giác ABC cân tại A)

Góc A chung

=> Tam giác ABD= tam giác ACE ( cạnh huyền- góc nhọn)

b) Có tam giác ABD= tam giác ACE( theo câu a)

=> AE=AD ( 2 cạnh tương ứng)

=> Tam giác AED cân tại A

c) Xét các tam giác vuông AEH và ADH có

Cạnh huyền AH chung

AE=AD

=> Tam giác AEH=tam giác ADH ( cạnh huyền- cạnh góc vuông)

=>HE=HD

Ta có AE=AD và HE=HD hay AH là đường trung trực của ED

d) Ta có AB=AC, AE=AD

=>AB-AE=AC-AD

=>EB=DC

Xét tam giác EBC vuông tại E và tam giác DCK vuông tại D có

BD=DK

EB=Dc

=> tam giác EBC= tam giác DCK ( 2 cạnh góc vuông)

=> Góc ECB= góc DEC ( 2 góc tương ứng)

24 tháng 4 2017

Bài 1:

Xét tam giác ABM và tam giác ACM có:

AB=AC(tam giác ABC cân tại A)

BM=MC(gt)

AM cạnh chung

Suy ra tam giác ABM= tam giác ACM (c-c-c)

b) Xét hai tam giác vuông MBH và MCK có:

BM=MC(gt)

góc ABC=góc ACB (tam giác ABC cân tại A)

Suy ra tam giác MBH= tam giác MCK (ch-gn)

Suy ra BH=CK

c) MK vuông góc AC (gt)

BP vuông góc AC (gt)

Suy ra MK sông song BD

Suy ra góc B1= góc M2 (đồng vị)

Mà M1=M2(Tam giác HBM= tam giác KCM)

Suy ra góc B1= góc M1

Suy ra tam giác IBM cân

xong bài 1 đẻ bài 2 mình nghĩ tiếp

22 tháng 12 2019

a, Xét tam giác MNF và tam giác KNF ta có:

   MN = NK

   \(\widehat{MNF}=\widehat{KNF}\)

   NF chung

--> \(\Delta MNF=\Delta KNF\)̣̣\((c.g.c)\)

b. Ta có : \(\Delta MNF=\Delta KNF\)

--> \(\widehat{NMF=}\widehat{NKF}=90^0\)

  Xét tam giác NPD có:

\(PM\perp ND\)

\(DK\perp PN\)

PM cắt DK tại F

--> F là trực tâm của tam giác NPD

--> \(NF\perp PD\)

22 tháng 12 2019

chưa học trực tâm đâu :))

P M N F I D

GT

 △MNP (M = 90o).  PNF = FNM = PNM/2 ; (F \in MP)

 K \in NP: NK = NM. {D} = KF ∩ NM

KL

 a, △NFM = △NFK

 b, NF ⊥ PD

Bg:

a, Xét △NFM và △NFK

Có: MN = NK (gt)

    FNM = PNF (gt)

   NF là cạnh chung

=> △MNF = △KNF (c.g.c)

b, Gọi { I } = NF ∩ PD

Vì △MNF = △KNF (cmt) => MF = KF (2 cạnh tương ứng)

Và FMN = FKN (2 góc tương ứng)

Mà FMN = 90o

=> FKN = 90o

Xét △PFK vuông tại K và △DFM vuông tại M

Có: KF = FM (cmt)

    PFK = DFM (2 góc đối đỉnh)

=> △PFK = △DFM (cgv-gn)

=> PK = DM (2 cạnh tương ứng)

Ta có: NP = PK + KN và DN = DM + MN

 Mà PK = DM (cmt) ; NK = MN (gt)

=> NP = DN

Xét △IPN và △IDN

Có: NP = DN (cmt)

     ENI = IND (gt)

  IN là cạnh chung

=> △IPN = △IDN (c.g.c)

=> PIN = DIN (2 góc tương ứng)

Mà PIN + DIN = 180o (2 góc kề bù)

=> PIN = DIN = 180o/2 = 90o

=> IN ⊥ PD

Mà { I } = NF ∩ PD

=> NF ⊥ PD (đpcm)