K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2021

...............................................................................

..........................................................................................

...........................................................................tgbvn JGKGITJNNFJFJNFJBFÒNBFOHRJ;FFJh' IIIor   ỉie

28 tháng 3 2016

http://d3.violet.vn/uploads/previews/291/844162/preview.swf

a) đương nhiên ( áp dụng hệ thức lượng trong tam giác vuông )

b) \(\text{EF}=\sqrt{DE^2+DF^2}=\sqrt{12^2+16^2}=20\) (cm )

ta có DE^2 = EH . EF => EH = DE^2/ EF = 12^2 / 20 = 7.2 ( cm )

DH = DE.DF / EF = 9,6 ( cm ) 

18 tháng 9 2021

\(a,\widehat{DHF}=90^0\)(góc nt chắn nửa đg tròn) nên \(DH\perp EF\)

\(b,\left\{{}\begin{matrix}OK\perp HF\\DH\perp HF\end{matrix}\right.\Rightarrow OK//DH;FO=OD\Rightarrow FK=HK\\ \left\{{}\begin{matrix}FO=OD\\FK=HK\end{matrix}\right.\Rightarrow OK.là.đtb.\Delta DFH\)

Lại có \(FD=2FO=10\left(cm\right);DH=\sqrt{FD^2-FH^2}=6\left(cm\right)\left(pytago\right)\)

\(\Rightarrow OK=\dfrac{1}{2}DH=3\left(cm\right)\)

\(c,\) Áp dụng HTL tam giác

\(\Rightarrow DH^2=HE\cdot HF\)

Mà \(2OK=DH\Rightarrow\left(2OK\right)^2=HE\cdot HF\Rightarrow4OK^2=HE\cdot HF\)

 

26 tháng 12 2017

O A B C D E F H M G I

a) Kẻ đường thẳng Ax tiếp xúc với đường tròn (O) tại A.

Khi đó \(\widehat{FAx}=\widehat{ACB}\)  (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung)

Ta dễ thấy  BFEC là tứ giác nội tiếp nên \(\widehat{AFE}=\widehat{ACB}\)

Vậy nên \(\widehat{AFE}=\widehat{FAx}\), chúng lại ở vị trí so le trong nên Ax // EF

Mà \(Ax\perp OA\Rightarrow EF\perp OA\)

Tương tự ta có : \(FD\perp OB;ED\perp OC\)

b) Kẻ đường kính CI. Khi đó ta có ngay IB // AH (Cùng vuông góc BC) ; IA // BH (Cùng vuông góc AC). Vậy nên tứ giác AIBH là hình bình hành và AH = IB.

Xét tam giác IBC có M là trung điểm BC, OC = OB nên OM là đường trung bình. Vậy \(OM=\frac{1}{2}IB\Rightarrow OM=\frac{1}{2}AH\)

Tương tự, gọi N, P  lần lượt là trung điểm AB, AC thì \(ON=\frac{1}{2}BH;OP=\frac{1}{2}CH\)

c) Gọi G' là giao điểm của AM và HO.

Ta thấy OM // AH nên áp dụng định lý Ta let ta có:

\(\frac{MG'}{G'A}=\frac{OM}{AH}=\frac{1}{2}\)

Độ ẨM là đường trung tuyến, AG' = G'M nên G' là trọng tâm tam giác ABC hay G' trùng G. Vậy H, G, O thẳng hàng.

26 tháng 12 2017

O A B C D E F H M G J I P Q X

d)  Gọi giao điểm của OA với PQ là J. Khi đó J là trung điểm QP.

Xét tam giác APQ có AJ là đường cao đồng thời trung tuyến nên nó là tam giác cân.

Vậy thì AP = AQ hay AP2 = AQ2.   (1)

Kẻ đường kính AX. 

Xét tam giác vuông AQX, đường cao  QJ, ta có: 

\(AQ^2=AJ.AX\)   (2)

Tứ giác BFEC nội tiếp nên \(\widehat{AFJ}=\widehat{ACB}=\widehat{AXB}\)

Suy ra \(\Delta AFJ\sim\Delta AXB\left(g-g\right)\Rightarrow\frac{AF}{AX}=\frac{AJ}{AB}\Rightarrow AJ.AX=AF.AB\)

Ta cũng có \(\Delta AFH\sim\Delta ADB\left(g-g\right)\Rightarrow\frac{AF}{AD}=\frac{AH}{AB}\Rightarrow AD.AH=AF.AB\)

Vậy thì \(AJ.AX=AH.AD\) hay \(AJ.AX=2.OM.AD\)    (3)

Từ (1), (2) và (3) suy ra  AP2 = AQ2 = 2OM.AD

a) \(EF=\sqrt{3^2+4^2}=5\)(cm)

\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{3\cdot4}{5}=\dfrac{12}{5}=2,4\left(cm\right)\)

b) \(EF=\sqrt{12^2+9^2}=15\left(cm\right)\)

\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cm\right)\)

c) \(EF=\sqrt{12^2+5^2}=13\left(cm\right)\)

\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\)

29 tháng 8 2023

bạn ơi kẽ thêm hình giúp minh có đc ko ạ

a: Xét ΔDEF vuông tại D có DH là đường cao

nên DH^2=EH*FH

=>DH=4,8cm

Xét ΔDEF vuông tại D có DH là đường cao

nên ED^2=EH*EF và FD^2=FH*FE

=>ED^2=36 và FD=64

=>ED=6cm; FD=8cm

b: DK=DF/2=4cm

Xét ΔDKE vuông tại D có tan DEK=DK/DE=4/6=2/3

nên \(\widehat{DEK}\simeq34^0\)

c: ΔDEF vuông tại D có DH là đường cao

nên EH*EF=ED^2

ΔDKE vuông tại D có DM là đường cao

nên EM*EK=ED^2

=>EH*EF=EM*EK

=>EH/EK=EM/EF

Xét ΔEHM và ΔEKF có

EH/EK=EM/EF

góc HEM chung

Do đó: ΔEHM đồng dạng với ΔEKF

=>góc EHM=góc EKF

=>góc FHM+góc FKM=180 độ

=>FKMH nội tiếp

=>góc MKH=góc MFH