K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Vì \(MN//BC\left( {M \in AB,N \in AC} \right)\) nên \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\)(định lí Thales).

b) Vì \(AM = DE\) mà \(\frac{{DE}}{{AB}} = \frac{1}{3} \Rightarrow \frac{{AM}}{{AB}} = \frac{1}{3} \Rightarrow \frac{{AN}}{{AC}} = \frac{1}{3} \Rightarrow AN = \frac{1}{3}AC\).

Lại có \(DF = \frac{1}{3}AC\) nên \(AN = DF = \frac{1}{3}AC\).

c) Vì \(MN//BC \Rightarrow \Delta ABC\backsim\Delta AMN\) (định lí)(1)

d) Dự đoán  hai tam giác \(DEF\) và \(ABC\) đồng dạng.

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Xét tam giác \(ABC\) vuông tại \(A\) ta có:

\(A{B^2} + A{C^2} = B{C^2}\) (định lí Py – ta – go)

\( \Leftrightarrow {6^2} + A{C^2} = {10^2} \Leftrightarrow A{C^2} = {10^2} - {6^2} = 64 \Leftrightarrow AC = 8\).

Xét tam giác \(DEF\) vuông tại \(D\) ta có:

\(D{E^2} + D{F^2} = E{F^2}\) (định lí Py – ta – go)

\( \Leftrightarrow {9^2} + D{F^2} = {15^2} \Leftrightarrow D{F^2} = {15^2} - {9^2} = 144 \Leftrightarrow DF = 12\).

b) Tỉ số:

\(\frac{{AB}}{{DE}} = \frac{6}{9} = \frac{2}{3};\frac{{AC}}{{DF}} = \frac{8}{{12}} = \frac{2}{3}\); \(\frac{{BC}}{{EF}} = \frac{{10}}{{15}} = \frac{2}{3}\).

Do đó, \(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{BC}}{{EF}} = \frac{2}{3}\).

c) Xét tam giác\(ABC\) và tam giác\(DEF\) có:

\(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{BC}}{{EF}} = \frac{2}{3}\) (chứng minh trên)

Do đó, \(\Delta ABC\backsim\Delta DEF\) (c.c.c)

30 tháng 4 2017

a,Xét tam giác ADE va tam giác ACB :

Có:AE/AB=3/9=1/3

 góc chung

AD/AC=4/12=1/3

=>tg ADE đồng dạng tg ACB(cgc)

=>AD/AC=AE/AB

b, Vì tg ADE đồng dạng tg ACB(cmt)

=> AD/AC=AE/AB=DE/CB

Mà:AD/AC=AE/AB=1/3

=>DE/CB=1/3

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Ta có: \(\frac{{A'B'}}{{AB}} = \frac{2}{6} = \frac{1}{3},\frac{{A'C'}}{{AC}} = \frac{3}{9} = \frac{1}{3},\frac{{B'C'}}{{BC}} = \frac{4}{{12}} = \frac{1}{3}\). Do đó, các tỉ số trên bằng nhau.

b) Ta có: \(\frac{{AM}}{{AB}} = \frac{2}{6} = \frac{1}{3};\frac{{AN}}{{AC}} = \frac{3}{9} = \frac{1}{3}\)

Vì \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} \Rightarrow MN//BC\) (định lí Thales đảo)

Vì \(MN//BC \Rightarrow \frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\) (Hệ quả của định lí Thales)

Do đó, \(\frac{{MN}}{{BC}} = \frac{1}{3} \Leftrightarrow \frac{{MN}}{{12}} = \frac{1}{3} \Rightarrow MN = \frac{{12.1}}{3} = 4\).

Vậy \(MN = 4cm\).

c) Vì \(MN//BC \Rightarrow \Delta ABC\backsim\Delta AMN\) (định lí)(1)

Xét tam giác \(AMN\) và tam giác \(A'B'C'\) ta có:

\(AM = A'B' = 2cm;AN = A'C' = 2cm;MN = B'C' = 4cm\)

Do đó, \(\Delta AMN = \Delta A'B'C'\) (c.c.c)

Vì  \(\Delta AMN = \Delta A'B'C'\) nên \(\Delta AMN\backsim\Delta A'B'C'\) (2)

Từ (1) và (2) suy ra, \(\Delta ABC\backsim\Delta A'B'C'\).

8 tháng 4 2020

bài1
a) EF=??
b) không đồng dạng
c) không đồng dạng
d) Đồng dạng (vì sao thì bạn nhắn cho mình nha)
các cặp góc bằng nhau ABC=DEF; BCA=EFD; CAB=FDE

bài 2
a) theo tính chất đường trung bình trong mỗi tam giác (không hiểu thì nhắn cho mình)
ta có MN=1/2AB => MN/AB=1/2 (1)
         NM=1/2BC => NP/BC=1/2 (2)
         MP=1/2AC => MP/AC=1/2 (3)

từ (1),(2),(3) => MNP đồng dạng với ABC 
b) vì MNP đồng dạng với ABC với tỉ số k là 2 ( theo câu a)
nên chu vi ABC = 2 lần chu vi MNP =40cm

a) Ta có: \(\dfrac{AN}{AB}=\dfrac{3}{6}=\dfrac{1}{2}\)

\(\dfrac{AM}{AC}=\dfrac{4.5}{9}=\dfrac{1}{2}\)

Do đó: \(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)\(\left(=\dfrac{1}{2}\right)\)

Xét ΔANM và ΔABC có 

\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔANM\(\sim\)ΔABC(c-g-c)

Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại FChứng minh tam giác ADE đồng dạng với tam giác BFE2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AKChứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB2 = BK.BC3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm...
Đọc tiếp

Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi

1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại F

Chứng minh tam giác ADE đồng dạng với tam giác BFE

2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AK

Chứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB= BK.BC

3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm E sao cho AE 18cm trên cạnh AC lấy F sao cho AF = 6 cm

So sánh AE/AC;AF/AB

4) Cho tam giác ABC vuông tại A đường cao AH cắt phân giác BD tại I

Chứng minh rằng a,IA.BH = IH.BA

                                b,Tam giác ABC đồng dạng với tam giác HBA

5) cho tam giác AOB có AB bằng 18 cm OA = 12 cm OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD bằng 3 cm. Qua D kẻ đường thẳng song song với AB cắt AO ở C. Gọi F là giao điểm của AD và BC

Tính độ dài OC;CD

6) Cho tam giác nhọn ABC có AB bằng 12 cm AC bằng 15 cm. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD = 4 cm,AE = 5cm

Chứng minh rằng DE // BC, Từ đó suy ra tam giác ADE đồng dạng với tam giác ABC?

7) Cho tam giác ABC vuông tại A D nằm giữa A và C. Kẻ đường thẳng D vuông góc với BC tại E và cắt AB tại F 

Chứng minh tam giác ADF đồng dạng với tam giác EDC

 

1
13 tháng 2 2018

tính đến hết tết à

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

Ta có: \(\frac{{AB}}{{DE}} = 2{;^{}}\frac{{BC}}{{EF}} = 2{;^{}}\frac{{AC}}{{DF}} = 2\)

10 tháng 9 2023

Ta có:\(\dfrac{AB}{DE}=2;\dfrac{BC}{EF}=2;\dfrac{AC}{DF}=2\)