Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AHB và tam giác CAB có:
Góc AHB=góc CAB=90 độ(gt)
Góc B chung
=> tam giác AHB đồng dạng tam giác CAB(g.g)
b) Xét tam giác ABC vuông tại A(gt) có: BC2= AB2 + AC2 = 225+400=625 => BC=25(cm) (pitago)
Ta có: SABC = 1/2.AB.AC = 1/2.15.20 = 150(cm2)
Nên SABC= 1/2.AH.BC=1/2.AH.25=150(cm2) => AH=12(cm)
Xét tam giác ABC vuông tại H(đường cao AH) có: BH2=AB2-AH2(pitago) => BH=9(cm)
Vậy...
c) Ta có AC/BD=20/30=2/3
Và AM/BH=6/9=2/3
=> AC/BD=AM/BH
Mặt khác ta có Góc ABC+ Góc BAH=90 độ(Góc AHB=90 độ)
Mà góc HAC+ góc BAH=90 độ(vì góc BAC=90 độ)
=> Góc ABC= Góc CAM
Xét tam giác DBH và tam giác CAM có:
Góc ABC = Góc CAM(cmt)
AC/BD=AM/BH(cmt)
=> Tam giác DBH đồng dạng tam giác CAM(c.g.c)
=> HD/MC=BD/AC => HD/BD=MC/AC hay HD.AC=BD.MC
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)
Vậy: BC=10cm; AD=3cm; CD=5cm
b) Ta có: \(\dfrac{CE}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)
\(\dfrac{CD}{CB}=\dfrac{5}{10}=\dfrac{1}{2}\)
Do đó: \(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)
Xét ΔCED và ΔCAB có
\(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)(cmt)
\(\widehat{C}\) chung
Do đó: ΔCED\(\sim\)ΔCAB(c-g-c)