Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D E F H K I 1 1 2 a)Xét tam giác EDH vuông tại H, áp dụng định lí py-ta-go
=>DE>DH
Xét tam giác FDK vuông tại K, áp dụng định lí py-tago
=> DF>DK
Ta có: DE>DH;DF>DK
=>DE+DH>DH+DK(ĐPCM)
b) Xét tam giác EHI và tam giác FKI có:
\(\widehat{H_1}=\widehat{K}=90\)
EI=FI(I là trung điểm EF)
\(\widehat{K_1}=\widehat{K_2}\)(2 góc đối đỉnh)
=>tam giác EHI= tam giác FKI( cạnh huyền-góc nhọn)
=> HI=KI(2 cạnh tương ứng)
Ta có: DE+DH>DH+DK(câu a)
=> DE+DH>DI-HI+DK
mà HI=KI(cmt)
=>DE+DH>DI-KI+DK
(hay) DE+DH>2DI(ĐPCM)
tu ve hinh :
cau b la vuong goc phai k
a, tamgiac ABC can tai A(gt) => AB = AC va goc ABC = goc ACB (dn)
goc ADB = goc ADC do AD | BC (GT)
=> tamgiac ADB = tamgiac ADC (ch - gn)
=> BD = DC (dn)
b, xet tamgiac BHD va tamgiac CKD co : BD = DC (Cau a)
goc ABC = goc ACB (cau a)
goc BHD = goc DKC = 90 do HD | AB va HK | AC (gt)
=> tamgiac BHD = tamgiac CKD (ch - gn)
=> HD = DK (dn)
c, xet tamgiac AHD va tamgiac AKD co : AD chung
HD = DK (cau b)
goc AHD = goc AKD = 90 do HD | AB va HK | AC (gt)
=> tamgiac AHD = tamgiac AKD (ch - cgv)
=> tamgiac AHK can tai A (dn)
=> goc AHK = (180 - goc BAC) : 2
tamgiac ABC can tai A (gt) => goc ABC = (180 - goc BAC) : 2
=> goc AHK = goc ABC 2 goc nay dong vi
=> HK // BC (tc)
d, tu ap dung py-ta-go
D K H E I F O
tam giác DEF cân tại D suy ra DE=DF, góc DEF = góc DFE
Xét tam giác KEF và tam giác HFE
có EF chung
góc EKF=góc EHF = 900
góc KEF=góc HFE (CMT)
suy ra tam giác KEF và tam giác HFE (cạnh huyền-góc nhọn)
suy ra EK = HF
mà DK+KE=DE, DH+HF=DF
lại có DE=DF (CMT)
suy ra KD=DH
b) xét tam giác DKO và tam giác DHO
có DO chung
góc DKO = góc DHO = 900
DK = DH (CMT)
suy ra tam giác DKO = tam giác DHO ( cạnh huyền-cạnh góc vuông)
suy ra góc KDO = góc HDO
suy ra DO là tia phân giác của góc EDF (1)
c) Vì DK = DH suy ra tam giác DKH cân tại D
suy ra góc DKH= góc DHK
suy ra góc DKH+ góc DHK + góc KDH = 1800
suy ra góc DKH=(1800 - góc KDH) :2 (2)
Tam giác DEF cân tại D
suy ra góc DEF + góc DFE + góc EDF = 1800
suy ra góc DEF = (1800 - góc KDH) :2 (3)
Từ (2) và (3) suy ra góc DKH = góc DEF
mà góc DKH đồng vị với góc DEF
suy ra KH // EF
d) Xét tam giác DEI và tam giác DFI
có DE = DF (CMT)
DI chung
EI = IF
suy ra tam giác DEI = tam giác DFI (c.c.c)
suy ra góc EDI = góc FDI
suy ra DI là tia phân giác của góc EDF (4)
Từ (1) và (4) suy ra DO trùng DI
hay ba điểm D, O, I thẳng hàng.
D F E H M K I
a) Do M là trung điểm của EF nên ME=MF=MD(đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền)
Suy ra \(\Delta MDE\) cân tại M.
\(\Rightarrow\widehat{E}=\widehat{EDM}\)
Ta có:\(\widehat{F}=90^0-\widehat{E}\)
\(\widehat{HDE}=90^0-\widehat{E}\)
\(\Rightarrow\widehat{F}=\widehat{HDE}\)
Mà \(\widehat{MDH}=\widehat{MDE}-\widehat{HDE}\)
\(\Rightarrow\widehat{MDH}=\widehat{E}-\widehat{F}\)
b) Trên EF lấy điểm K sao cho EK=ED
Trên DF lấy điểm I sao cho DI=DH
Khi đó:\(EF-DE=EF-EK=KF\)
\(DF-DH=DF-DI=IF\)
Ta cần chứng minh \(KF>IF\),thật vậy!
Ta có:\(EK=ED\)
\(\Rightarrow\Delta EDK\) cân tại E
\(\Rightarrow\widehat{EKD}=\widehat{EDK}\)
Ta lại có:\(\widehat{EDK}+\widehat{KDI}=90^0\)
\(\widehat{EKD}+\widehat{HDK}=90^0\)
Mà \(\widehat{EKD}=\widehat{EDK}\left(cmt\right)\)
\(\Rightarrow\widehat{KDI}=\widehat{HDK}\)
Xét \(\Delta DHK\&\Delta DIK\) có:
\(DH=DI\)(theo cách chọn điểm phụ)
\(\widehat{KDI}=\widehat{HDK}\left(cmt\right)\)
\(DK\) là cạnh chung
\(\Rightarrow\Delta DHK=\Delta DIK\left(c-g-c\right)\)
\(\Rightarrow\widehat{KID}=90^0\)
\(\Rightarrow\Delta FIK\) vuông tại I
\(\Rightarrow FK>FI^{đpcm}\)
a)xét ΔEHI và ΔFKI có :
\(\widehat{K}=\widehat{H}\)(=90o)
\(\widehat{KIF}=\widehat{EIH}\)(2 góc đối đỉnh)
EI=FI(I là trung điểm của EF)
⇒ΔEHI=ΔFKI(cạnh huyền góc nhọn)
⇒IH=IK(2 cạnh tương ứng)
b)vì ΔEHD vuông tại H
⇒ED > HD (trong tam giác vuông cạnh huyền luôn là cạnh lớn nhất)(1)
chứng minh tương tự với Δ KID
⇒FD > DK (2)
từ (1) và (2) ⇒DE+DF>DH+DK