K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2017

a) Hai tam giác vuông DHE và DKF có:
DE = DF (\(\Delta DEF\) cân tại D)
\(\widehat{D}\) chung
\(\Rightarrow\) \(\Delta DHE=\Delta DKF\) (cạnh huyền-góc nhọn)
\(\Rightarrow\) DH = DK (hai cạnh tương ứng)

b) Hai tam giác vuông DKO và DHO có:
DH = DK (c/m câu a)
DO là cạnh chung
\(\Rightarrow\) \(\Delta DKO=\Delta DHO\) (cạnh huyền - cạnh góc vuông)
\(\Rightarrow\) \(\widehat{KDO} = \widehat{HDO}\)
\(\Rightarrow\) DO là tia phân giác của góc D.

9 tháng 3 2020

D K H E I F O

tam giác DEF cân tại D suy ra DE=DF, góc DEF = góc DFE

Xét tam giác KEF và tam giác HFE

có EF chung

góc EKF=góc EHF = 900

góc KEF=góc  HFE  (CMT)

suy ra  tam giác KEF và tam giác HFE (cạnh huyền-góc nhọn)

suy ra EK = HF

mà DK+KE=DE, DH+HF=DF

lại có DE=DF (CMT)

suy ra KD=DH

b) xét tam giác DKO và tam giác DHO

có DO chung

góc DKO = góc DHO = 900

DK = DH (CMT)

suy ra tam giác DKO = tam giác DHO ( cạnh huyền-cạnh góc vuông)

suy ra góc KDO = góc HDO

suy ra DO là tia phân giác của góc EDF  (1)

c) Vì DK = DH suy ra tam giác DKH cân tại D

suy ra góc DKH= góc DHK

suy ra góc DKH+ góc DHK + góc KDH = 1800

suy ra góc DKH=(1800 - góc KDH) :2  (2) 

Tam giác DEF cân tại D

suy ra góc DEF + góc DFE + góc EDF = 1800

suy ra góc DEF = (1800 - góc KDH) :2 (3)

Từ (2) và (3) suy ra góc DKH = góc DEF

mà góc DKH đồng vị với góc DEF 

suy ra KH // EF

d) Xét tam giác DEI và tam giác DFI

có DE = DF  (CMT)

DI chung

EI = IF 

suy ra tam giác DEI = tam giác DFI (c.c.c)

suy ra góc EDI = góc FDI

suy ra DI là tia phân giác của góc EDF  (4)

Từ (1) và (4) suy ra DO trùng DI

hay ba điểm D, O, I thẳng hàng.

5 tháng 3 2020

Câu 1:

Các cạnh góc vuông đó lần lượt là: \(HI=5cm;HK=12cm.\)

+ Xét \(\Delta HIK\) vuông tại \(H\left(gt\right)\) có:

\(IK^2=HI^2+HK^2\) (định lí Py - ta - go).

=> \(IK^2=5^2+12^2\)

=> \(IK^2=25+144\)

=> \(IK^2=169\)

=> \(IK=13\left(cm\right)\) (vì \(IK>0\)).

Vậy cạnh huyền \(IK=13\left(cm\right).\)

Chúc bạn học tốt!

7 tháng 3 2020

thanks bạnleuleu

a: Xét ΔDEH vuông tại E và ΔDIH vuông tại I có

DH chung

góc EDH=góc IDH

=>ΔDEH=ΔDIH

b: DE=DI

HE=HI

=>DH là trung trực của EI

c: EH=HI

HI<HF

=>EH<HF

d: Xét ΔDFK có

KI,.FE là đường cao

KI cắt FE tại H

=>H là trực tâm

=>DH vuông góc KF

17 tháng 4 2018

a)xét ΔEHI và ΔFKI có :

\(\widehat{K}=\widehat{H}\)(=90o)

\(\widehat{KIF}=\widehat{EIH}\)(2 góc đối đỉnh)

EI=FI(I là trung điểm của EF)

⇒ΔEHI=ΔFKI(cạnh huyền góc nhọn)

⇒IH=IK(2 cạnh tương ứng)

17 tháng 4 2018

b)vì ΔEHD vuông tại H

⇒ED > HD (trong tam giác vuông cạnh huyền luôn là cạnh lớn nhất)(1)

chứng minh tương tự với Δ KID

⇒FD > DK (2)

từ (1) và (2) ⇒DE+DF>DH+DK

31 tháng 3 2018

Tg ABD =tg EBD ( cm trên) •> AD=DE( 2 cạnh tương ứng) (1)

Tg ADF vg tại A=> Góc A lớn nhất=> FD lớn nhất( Qh giữa góc và cạnh đối diện trong 1 tam giác)=> AD<FD(2)

Từ 1 và 2 => ED<FD

31 tháng 3 2018

a) Tam giác ABC vuông tại A => AB2+AC2=BC2 ( theo định lý Pitago)

​​=> 62+Ac2=10=>AC2=100-36=64=> AC= 8

Vì D nằm trên AC=> AD+DC= AC=> 3+DC=8=> DC=5(cm)