Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ tgiác ACD và tgiác AME là hai tgiác vuông tại A.
AD = AE (gt)
góc(ADC) = góc (AEM) (góc có cạnh tương ứng vuông góc)
=> tgiácACD = tgiácAME (g.c.g)
b/ ta có: AG//EH (cùng vuông góc với CD)
=> AG // IH
mà gt => AI // GH
vậy AGHI là hình bình hành
=>AG = IH.
mặt khác theo cm trên ta có: tgiác ACD = tgiác AME
=> AM = AC = AB
=> A là trung điểm BM, mà AI // BC
=> AI là đường trung bình của tgiác MBH
=> I là trung điểm của MH.
vậy: IM = IH = AG
có: AM = AB
góc BAG = góc AMI (so le trong)
=> tgiác AGB = tgiác MIA ( c.g.c)
c/ có AG//MH, A là trung điểm BM
=> AG là đường trung bình của tgiácBMH
=> G là trung điểm BH
hay BG = GH.
Câu hỏi của Bảo Châu Trần - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo lời giải tại đây nhé.
Tam giác ABC cân tại A nên góc B= góc C
theo bài ta co: BK.CH=BI^2=BI.CI => BI/BK = CH/ CI (BI=CI)
xét tam giác KBI và ICH có: góc B= góc C; BI/BK = CH/ CI
suy ra 2 tam giấc đồng dạng theo TH c.g.c.
b. từ a suy ra IK/IH = BK/CI = BK/BI (CI=BI)
và góc BKI= góc CIH.
ta có: KIB+B+BKI = 180
KIB+KIH+CIH = 180
suy ra góc B = góc KIH.
xét tam giác KIH và tam giAC KBI có:
góc B = góc I
IK/IH = BK/BI ( chứng minh trên )
suy ra 2 tam giác đồng dạng theo TH c.g.c
c. theo b suy ra góc IKH = góc BKI suy ra KI là phân giác góc BKH
d. theo c ta có IK/IH= BK/BI => IH. KB = IK. BI
tam giác KBI đồng dạng ICH => IK/IH = BI/CH => HC.IK = IH.BI
suy ra VT = IK.BI + IH. BI = BI.(IK+IH) > BI.HK ( theo bất đẳng thức tam giác: Tổng 2 cạnh trong tam giác lớn hơn cạnh còn lại)