Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.*] Ta có ;góc DAC = góc DAB + góc BAC = 90độ + góc BAC
góc BAE = góc CAE + góc BAC = 90độ + góc BAC
\(\Rightarrow\) góc DAC = góc BAE \((1)\)
Xét tam giác DAC và tam giác BAE có
AD = AB [ vì tam giác ABD cân ]
góc DAC = góc BAE [ theo \((1)\)]
AC = AE [ vì tam giác ACE cân ]
Do đó ; tam giác DAC = tam giác BAE [ c.g.c ]
\(\Rightarrow\)CD = EB [ cạnh tương ứng ]
*]Gọi I , O lần lượt là giao điểm của CD với EB và AB với DC
Xét tam giác AOD vuông tại A ta có
góc D + góc AOD = 90độ
mà góc D = góc ABE [ vì tam giác DAC = tam giác BAE ] hay góc D = góc OBI
góc AOD = góc IOB [ đối đỉnh ]
\(\Rightarrow\)góc OBI + góc IOB = 90độ \((2)\)
Xét tam giác IOB có
góc OBI + góc IOB + góc OIB = 180độ
\(\Rightarrow\)góc OIB = 180độ - 90độ [ theo \((2)\)]
\(\Rightarrow\)góc OIB = 90độ
\(\Rightarrow\)OI vuông góc với BE
mà I là gđ của CD và EB
\(\Rightarrow\)CD vuông góc với BE
A B C D E
t chỉ chứng minh được CD = BE thôi
a, góc DAB = góc EAC = 90
góc BAC chung
góc DAB + góc BAC = góc DAC
góc EAC + góc BAC = góc EAB
=> góc DAC = góc EAB
xét tam giác DAC và tam giác BAE có :
AE = AC do tam giác AEC vuông cân tại A (gt)
AD = AB do tam giác ABD vuông cân tại A (Gt)
=> tam giác DAC = tam giác BAE (c-g-c)
=> CD = BE (đn)
b, vẽ hình lại nhìn cho rõ
A B C H D E M N O
AH căt DE tại O
Kẻ EM _|_ AO tại M
Kẻ DN _|_ AO tại N
+ có góc BAH + góc BAD + góc DAN = 180
mà góc BAD = 90 do tam giác BAD vuông cân tại A (GT)
=> góc BAH + góc DAN = 90
mà góc BAH + gócABH = 90 do tam giác ABH vuông tại H
=> góc DAN = góc ABH
xét tam giác AND và tam giác BHA có : AB = AD (câu a)
góc DNA = góc BHA = 90
=> tam giác AND = tam giác BHA (ch-gn)
=> AH = DN (đn) (1)
+ góc HAC + góc CAE + góc EAM = 180
góc CAE = 90 (câu a)
=> góc HAC + góc EAM = 90
góc HAC + góc HCA = 90 do tam giác HAC vuông tại H
=> góc EAM = góc HCA
xét tam giác AHC và tam giác EMA có : AC = AE (câu a)
góc AHC = góc EMA = 90
=> tam giác AHC = tam giác EMA (ch-gn)
=> AH = ME (đn) (2)
(1)(2) => ME = DN (3)
DN _|_ AH (cách vẽ)
EM _|_ AH (cách vẽ)
=> DN // EM (tc)
=> góc NDO = góc OEM (2 góc slt)
xét tam giác DNO và tam giác EMO có : góc DNO = góc EMO = 90 và (3)
=> tam giác DNO = tam giác EMO (gn-cgv)
=> DO = OE
mà O nằm giữa D; E
=> O là trung điểm của DE
a) xét \(\Delta ABC\)CÓ
\(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=36+64=100\)
VÌ \(100=100\)
\(\Rightarrow BC^2=AB^2+AC^2\)
VẬY \(\Delta ABC\) VUÔNG TẠI A
trong tam giác ABC ta có :
AB2=62=36
AC2=82=64
BC2=102=100
ta thấy : 100=36+64 => BC2=AC2=AB2( định lý pytago đảo )
=> tam giác ABC vuông tại A
CHÚC BẠN HỌC TỐT !!!
a)kẻ DM,EN vuông góc BC
Xét tam giác AHC và tam giác CNE có:
AC=CE
góc AHC= góc CNE=90
góc ACH=góc CEN
suy ra AH=CN
HC=NE
tương tự:AH=BM
HB=MB
do góc CNE=góc CPE( p là giao của CK và BE)
suy ra góc NEB=HCK
Tam giác BNE=KHC
suy ra BN=Kn suy ra BC=KA
suy ra CM=KN
suy ra tam giác CMD=KHB
có 2 cặp góc vuông tương ứng
MD,BH và MC,KN
suy ra CD vuông BK
b)từ a
có KH,BE,CD là 3 đường cao của tam giácKBC nên chúng đồng quy tại I
Trả lời theo kiểu lớp 7 giùm mik