K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

a,chứng minh CD=BE và CD vuông góc với BE

1 tháng 8 2020

HAHAHAHAHAHAHAHHAHAHAHAHAHAHAHAHAHHAHAHAHAHHAHAHAHAHHAHAAHHA

22 tháng 6 2020

1) d) Ta có: \(\Delta\)KHC cân tại H 

=> HK = CK 

=> AB = AC = 2Ck = 2HK 

=> AB = 2 HK 

Ta có: 

Qua H kẻ đường thẳng // với HA cắt AB tại T 

Xét \(\Delta\)KHA và \(\Delta\)ATK có: 

AK chung 

^HKA = ^TAK ( so le trong ) 

^HAK = ^TKA ( so le trong ) 

=> \(\Delta\)KHA = \(\Delta\)ATK 

=> AT = HK và KT = HA 

=> AB = 2HK = 2AT

Khi đó: AH + BK = KT + BK > BT = AB + AT 

=> 2 ( AH + BK ) > 2 AB + 2AT = 2AB + AB = 3AB 

Vậy 2 ( AH + BK) > 3AB

23 tháng 6 2020

2)  M I D E A P Q B C H

a)

  • Xét \(\Delta\)ADC và \(\Delta\)ABE có: 

AD = AB ( \(\Delta\)ADB cân tại A ) 

AC = AE ( \(\Delta\)ACE cân tại E) 

^DAC = ^BAE ( vì ^DAC = ^DAB + ^BAC = 90o + ^BAC  ; ^BAE = ^BAC + ^CAE = ^BAC + 90o ) 

=> \(\Delta\)ADC = \(\Delta\)ABE (1)

=> CD = EB 

  •  Gọi P; Q lần lượt là giao điểm của DC và BA và BE

(1) => ^ADC = ^ABE => ^ADP = ^PBQ (2)

Xét \(\Delta\)APD và \(\Delta\)PQB 

có: ^APD + ^ADP + ^PAD = ^PQB + ^PBQ + ^QPB  = 180 độ ( tổng 3 góc  trong 1 tam giác ) 

mà ^ADP = ^PBQ (theo (2)) ; ^APD = ^QPB ( đối đỉnh) 

=> ^PQB = ^PAD = ^BAD = 90 độ  ( \(\Delta\)ABD vuông ) 

=> DC vuông BE 

b) Trên mặt phẳng bờ DE không chứa A, qua D kẻ tia Dx // AE. Trên Dx lấy điểm M sao cho DM = AE 

Gọi giao điểm của DE và MA là I

Dễ dàng chứng minh được: \(\Delta\)DIM = \(\Delta\)EIA  (3) 

=> DM = AE = AC 

Lại có: ^MDA + ^DAE = ^MDE + ^EDA + ^DAE = ^DEA + ^EDA + ^DAE = 180 độ 

mà ^DAE + ^BAC = 180 độ 

=> ^MDA = ^BAC 

Xét \(\Delta\)ABC và \(\Delta\)DAM có: AB = DA ; AC = DM ; ^BAC = ^ADM 

=> \(\Delta\)ABC = \(\Delta\)DAM 

=> ^DAM = ^ABC 

=> ^DAM + ^DAB + ^BAH = ^ABC + 90o + ^BAH = 180 độ 

=> M; I; A; H thẳng hàng 

=> AH cắt DE tại I 

(3) => ID = IE => I là trung điểm của DE 

Do vậy AH đi qua trung điểm của DE 

22 tháng 6 2020

a.*] Ta có ;góc DAC = góc DAB + góc BAC  = 90độ + góc BAC

                 góc BAE = góc CAE + góc BAC  = 90độ + góc BAC

\(\Rightarrow\) góc DAC = góc BAE                 \((1)\)

Xét tam giác DAC và tam giác BAE có 

          AD = AB [ vì tam giác ABD cân ]

          góc DAC = góc BAE [ theo \((1)\)]

          AC = AE [ vì tam giác ACE cân ]

Do đó ;  tam giác DAC = tam giác BAE [ c.g.c ]

\(\Rightarrow\)CD = EB [ cạnh tương ứng ]

*]Gọi I , O lần lượt là giao điểm của CD  với EB và AB với DC 

Xét tam giác AOD vuông tại A ta có 

   góc D + góc AOD = 90độ

mà góc D = góc ABE [ vì tam giác DAC = tam giác BAE ] hay góc D = góc OBI 

      góc AOD = góc IOB [ đối đỉnh ]

\(\Rightarrow\)góc OBI + góc IOB = 90độ         \((2)\)

Xét tam giác IOB có

   góc OBI + góc IOB + góc OIB = 180độ 

\(\Rightarrow\)góc OIB                             = 180độ - 90độ [ theo \((2)\)]

\(\Rightarrow\)góc OIB                             = 90độ

\(\Rightarrow\)OI vuông góc với BE 

mà I là gđ của CD và EB 

\(\Rightarrow\)CD vuông góc với BE