K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2021

Đặt \(CD=x,BC=y\left(x,y>0\right)\)

Ta có \(AB=\sqrt{BD^2-AD^2}=12\)

Ta có hệ phương trình: \(\hept{\begin{cases}\frac{x}{y}=\frac{AD}{AB}=\frac{4}{12}=\frac{1}{3}\\12^2+\left(4+x\right)^2=y^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=3x\\144+\left(4+x\right)^2=\left(3x\right)^2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3x\\x=5\left(h\right)x=-4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=5\\y=15\end{cases}}\)(Vì \(x,y>0\))

Vậy \(S_{ABC}=\frac{AB.\left(AD+CD\right)}{2}=\frac{12.\left(4+5\right)}{2}=54.\)

12 tháng 11 2017

a)Ta có: SinC = \(\frac{AB}{BC}\)=> Sin40 = \(\frac{10}{BC}\)=> BC = 15.5 (cm)

b) Có B = 90 độ - 40 độ = 60 độ

=> Góc ABD = 60/2 = 30 độ

Ta có TanABD = \(\frac{AD}{BA}\)=> Tan30 = \(\frac{AD}{10}\)=> AD = \(\frac{\sqrt{3}\cdot10}{3}\)

18 tháng 10 2016

Hình bạn tự vẽ nhé

a/ Ta có \(\widehat{ABC}=\widehat{ACB}=\frac{180-36}{2}=72\)

\(\widehat{ACD}=\widehat{DCB}=\frac{\widehat{ACB}}{2}=\frac{72}{2}=36\)

\(\Rightarrow\Delta ACD\)cân tại D (vì \(\widehat{ACD}=\widehat{DCA}=36\))

\(\Rightarrow DA=DC\left(1\right)\)

Ta lại có \(\widehat{CDB}=\widehat{DAC}+\widehat{ACD}=72\)

\(\Rightarrow\Delta DCB\)cân tại C (vì \(\widehat{CDB}=\widehat{CBD}=72\))

\(\Rightarrow BC=DC\left(2\right)\)

Từ (1) và (2) => DA = DC = BC = 1 (cm)

18 tháng 10 2016

b/ Ta có 

\(KC=BC.\sin\left(72\right)=\sin\left(72\right)\)

\(KB=BC.\cos\left(72\right)=\cos\left(72\right)\)

Vậy \(\Delta BKC\)có B = 72, C = 18, K = 90, KC = sin(72), KB = cos(72), BC = 1

xét tam giác ABD có góc BAD=90 độ
= BD^2=AB^2+AD^2
=>AB^2=BD^2-AD^2=10-1=9
=> AB=3 cm
có AC=AD+DC=1+√10 cm
tam giác ABC vuông tại A
=>AB^2+AC^2=BC^2
=>BC^2=9+1+2√10+10=20+2√10
=>BC=√(20+2√10)

9 tháng 6 2019

DC =\(\sqrt{10}\)tại sao

11 tháng 7 2017

a) Từ A kẻ AE//BD cắt đường thẳng CB tại E
=> ^BAE=^DBA=^B/2=60* và ^ABE=60* (kề bù với ^B)
=> ∆ABE đều nên AB=BE=AE=6
Do BD//AE suy ra: BD/AE=CB/CE
mà CE=CB+BE=12+6=18cm
ta có BD/6=12/18 suy ra BD=12.6/18=4 (cm)

b) Xét ∆ABM có AB=BM =6cm (do BM=MC=BC/2)
nên ∆ABM cân tại B mà BD là đường phân giác nên cũng là đường cao
do đó BD vuông góc với AM.

12 tháng 10 2018

a) Ta có:

ˆABD=ˆCBD=ˆABC2=120∘2=60∘ABD^=CBD^=ABC^2=120∘2=60∘

Từ A kẻ đường thẳng song song với BD cắt CD tại E.

Lại có:

ˆBAE=ˆABD=60∘BAE^=ABD^=60∘ (so le trong)

ˆCBD=ˆAEB=60∘CBD^=AEB^=60∘ (đồng vị)

Suy ra tam giác ABE đều

⇒AB=BE=EA=6(cm)(1)⇒AB=BE=EA=6(cm)(1)

Khi đó: CE = BC + BE = 12 + 6 = 18 (cm)

Tam giác ACE có AE // BD nên suy ra:

BCCE=BDAE⇒BD=BC.AECE=12.618=4(cm)

b) Ta có:

MB=MC=12.BC=12.12=6(cm)(2)MB=MC=12.BC=12.12=6(cm)(2)

Từ (1) và (2) suy ra:

BM=AB⇒BM=AB⇒ ∆ABM cân tại B.

Tam giác cân ABM có BD là đường phân giác nên đồng thời nó cũng là đường cao (tính chất tam giác cân). Vậy BD⊥AM