Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Trên tia đối AB lấy I sao cho AI = AB
- Vẽ hình chữ nhật AINC ( IN // AC ; IN = AC )
Do AC=3AB nên AB=AD=DE=EC=AI
Lấy M thuộc IN sao cho IM = AD
Ta có tứ giác IADM có AD//IM, AD=IM nên ADMI là hình bình hành
Hình bình hành ADMI có 1 góc vuông, 2 cạnh kề AD=AI nên ADMI là hình vuông
nên AD=DM=MI=AI
Xét tam giác BIM vuông tại I và tam giác MNC vuông tại N có:
BI=MN( do 2.AB=2.DE)
IM=NC
=> Tam giác BIM= tam giác MNC
=>BM=CM và góc MBI = góc CMN
Xét tam giác BIM vuông tại I và tam giác EAB vuông tại A có:
BI=EA( do 2.AB=2.DE)
IM=AB
=> Tam giác BIM= tam giác EAB
=>góc MBI= góc AEB
Ta có: tam giác BMC vuông tại M
Lại có BM=CM nên tam giác BMC vuông cân tại M
=> Góc MCB=45 độ => ACB+MCD=45 độ
Mà:
MCD=CMN=MBI=AEB =>ACB+AEB=45 độ
Cách 1:
Kẻ DM ∟ AC sao cho DM = AB.
Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c)
=> ^DCM = ^AEB và BE = MC (1)
Δ BMD = Δ BED (c - g - c)
=> ^BMD = ^BED và BM = BE (2)
(1) và (2) cho:
^DCM = ^BMD và CM = MB
=> Δ BMC cân tại M
mà ^DMC + ^DCM = 90o (Δ MDC vuông)
=> ^DMC + ^BMD = 90o
=> Δ BMC vuông cân.
=> BCM = 45o
Mà ^ACB + ^DCM = ^BCM
=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt))
Cách 2:
Đặt AB = a
ta có: BD = a√2
Do DE/DB = DB/DC = 1/√2
=> Δ DBC đồng dạng Δ DEB (c - g - c)
=> ^DBC = ^DEB
Δ BDC có ^ADB góc ngoài
=> ^ADB = ^DCB + ^DBC
hay ^ACB + ^AEB = 45o
Cách 3
ta có:
tanAEB = AB/AE = 1/2
tanACB = AB/AC = 1/3
tan (AEB + ACB) = (tanAEB + tanACB)/(1 - tanAEB.tanACB)
= (1/2 + 1/3)/(1 - 1/2.1/3) = 1 = tan45o
Vậy ^ACB + ^AEB = 45o
tg ABD vuông cân tại A => ^ADB = 45o và BD = AD.căn2 => BD/AD = căn2 => BD/DE = căn2 (1)
Lại có DC/BD = 2AD/(AD.căn2) = căn2 (2)
(1) và (2) => BD/DE = DC/BD => tgBDE ~ tgCDB (có góc D chung xen giữa 2 cạnh tương ứng tỷ
lệ) => ^DBE = ^DCB = ^ACB
Mà ^AEB + ^DEB = ^ADB = 45o ( góc ngoài = tổng 2 góc trong kô kề) => ^AEB + ^ACB = 45 độ
Đoạn thẳng f: Đoạn thẳng [B, A] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng i: Đoạn thẳng [B, C] Đoạn thẳng j: Đoạn thẳng [B, E] Đoạn thẳng k: Đoạn thẳng [B, D] Đoạn thẳng p: Đoạn thẳng [A, H] Đoạn thẳng q: Đoạn thẳng [D, K] Đoạn thẳng r: Đoạn thẳng [H, K] Đoạn thẳng s: Đoạn thẳng [B, K] Đoạn thẳng t: Đoạn thẳng [E, K] B = (-1.92, 8.16) B = (-1.92, 8.16) B = (-1.92, 8.16) A = (-1.88, 2.6) A = (-1.88, 2.6) A = (-1.88, 2.6) Điểm D: Giao điểm đường của c, g Điểm D: Giao điểm đường của c, g Điểm D: Giao điểm đường của c, g Điểm C: Điểm trên u' Điểm C: Điểm trên u' Điểm C: Điểm trên u' Điểm E: Trung điểm của D, C Điểm E: Trung điểm của D, C Điểm E: Trung điểm của D, C Điểm H: Giao điểm đường của d, l Điểm H: Giao điểm đường của d, l Điểm H: Giao điểm đường của d, l Điểm K: Giao điểm đường của m, n Điểm K: Giao điểm đường của m, n Điểm K: Giao điểm đường của m, n
Chúng ta dùng kiến thức lớp 7 để chứng minh bài này như sau:
Trên tia BA lấy điểm H sao cho BH = AC. Sau đó vẽ hình chữ nhật AHKD. Nối BK, EK.
Ta thấy AH = 2AB; AE = 2AB nên AH = AE.
Vậy ta thấy ngay \(\Delta BAE=\Delta EDK\left(c-g-c\right)\Rightarrow BE=EK;\widehat{BEA}=\widehat{EKD}\)
hay \(\widehat{BEK}=90^o\) và EB = EK. Vậy tam giác BEK là tam giác vuông cân tại E. Suy ra \(\widehat{BKE}=45^o\)
Ta cũng có \(\Delta BHK=\Delta CBA\left(c-g-c\right)\Rightarrow\widehat{HBK}=\widehat{BCA}\)
Do AHKD là hình chữ nhật nên HB // DK, suy ra \(\widehat{HBK}=\widehat{BKD}\) (So le trong)
Vậy nên \(\widehat{ACB}+\widehat{BEA}=\widehat{HBK}+\widehat{EKD}=\widehat{BKD}+\widehat{EKD}=\widehat{BKE}=45^o\) (đpcm)
- Trên tia đối AB lấy I sao cho AI = AB
- Vẽ hình chữ nhật AINC ( IN // AC ; IN = AC )
Do AB = 1/3 AC => AD = AB => AD=AI . Lấy M thuộc IN sao cho IM = AD
Ta có hình vuông IAMD => IA = IM = MD = DA
Xét tam giác MBI và tam giác CMN
MI=NC (và IANC là hình chữ nhật)
BI=MN ( vìIA=1/3 IN và IA = IM => IM=1/2 MN)
=> góc I = góc M =90 độ (gt)
<=> tg MBI = tg CMI (c - g - c)
=> góc MBI = góc CMN ; BM = CM ⇒ BMC cân ở M
Xét tg BIM và tg EAB
AB = MI
AE = BI
góc I= góc A =90 độ
<=> tg BIM = tg EAB (c - g - c)
=>góc MBI = góc AEB (góc tương ứng)
Ta có:
góc IMB +góc BAM = 90 độ
Mà: góc MBA = góc CMN
=> góc IBM + CMN = 90 độ
=> tg BMC vuông ở M (2)
Từ (1) và (2)
=> Tam giac MCB vuông cân ở M.
=> Góc MCB = 45 độ hay góc ACB+MCD =45 độ
Lại có:
Góc MCD=CMN=MBI=AEB
=> góc ACB+AEB=45 độ (Đpcm)