K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2021

a: Xét tứ giác CEIF có 

\(\widehat{CEI}=\widehat{CFI}=\widehat{FCE}=90^0\)

Do đó: CEIF là hình chữ nhật

12 tháng 10 2021

giải giúp mình với

 

27 tháng 10 2023

loading...   *) Tứ giác CEIF là hình gì?

Tứ giác CEIF có:

∠CEI = ∠CFI = ∠ECF = 90⁰ (gt)

⇒ CEIF là hình chữ nhật

*) Do CEIF là hình chữ nhật (cmt)

⇒ FI = CE và FI // CE

Do FI // CE (cmt)

⇒ FH // CE

Do FI = CE (cmt)

FI = FH (gt)

⇒ FH = CE

Tứ giác CHFE có:

FH // CE (cmt)

FH = CE (cmt)

⇒ CHFE là hình bình hành

27 tháng 10 2023

 

Sửa đề: IF vuông góc AC tại F

loading...

a: Xét tứ giác CEIF có

\(\widehat{CEI}=\widehat{CFI}=\widehat{FCE}=90^0\)

Do đó: CEIF là hình chữ nhật

b: CEIF là hình chữ nhật

=>CE//FI và CE=FI

CE=FI

FI=FH

Do đó: CE=FH

CE//FI

\(F\in IH\)

Do đó: CE=FH

Xét tứ giác CEFH có

CE//FH

CE=FH

Do đó: CEFH là hình bình hành

13 tháng 11 2021

a: Xét tứ giác AEIF có 

\(\widehat{AEI}=\widehat{AFI}=\widehat{FAE}=90^0\)

Do đó: AEIF là hình chữ nhật

11 tháng 12 2020

undefined

11 tháng 12 2020

mong mọi người giúp hộ mình

a: Xét tứ giác AMIN có

\(\widehat{AIM}=\widehat{AIN}=\widehat{NAM}=90^0\)

Do đó: AMIN là hình chữ nhật

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

27 tháng 12 2021

a: Xét tứ giác ANMP có

\(\widehat{ANM}=\widehat{APM}=\widehat{PAN}=90^0\)

Do đó: ANMP là hình chữ nhật