Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt AB/8=AC/15=k
=>AB=8k; AC=15k
Xét ΔABC vuông tại A có \(BC^2=AB^2+AC^2\)
\(\Leftrightarrow289k^2=51^2\)
=>k=3
=>AB=24cm; AC=45k
b: AB/AC=4/3
nên AB=4/3AC
BA-AC=14cm
=>1/3AC=14cm
=>AC=42(cm)
=>AB=56(cm)
\(BC=\sqrt{42^2+56^2}=70\left(cm\right)\)
Ta có: \(\frac{AB}{3}=\frac{AC}{4}\)
=> \(\frac{AB}{AC}=\frac{3}{4}\)
Độ dài cạnh AB là:
14 : (3 + 4) x 3 = 6 (cm)
Độ dài cạnh AC là:
14 - 6 = 8 (cm)
Áp dụng định lý Py-ta-go, ta có:
\(AB^2+AC^2=BC^2=6^2+8^2=100=BC^2=>BC=10\)
Đ/S: 10
Chúc bạn học tốt !!!
Giải: Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{AB}{3}=\frac{AC}{4}=\frac{AB+AC}{3+4}=\frac{14}{7}=2\)
=> \(\hept{\begin{cases}\frac{AB}{3}=2\\\frac{AC}{4}=2\end{cases}}\)=> \(\hept{\begin{cases}AB=2.3=6\\AC=2.4=8\end{cases}}\)
Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A
=> BC2 = AB2 + AC2 = 62 + 82 = 36 + 64 = 100
=> BC = 10
Vậy ....
Mình làm mẫu cho bạn câu a) nhé
a) Theo định lí Pytago ta có :
BC2 = AB2 + AC2
152 = AB2 + AC2
AB : AC = 3:4
=> \(\frac{AB}{3}=\frac{AC}{4}\)=> \(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}\)và AB2 + AC2 = 152
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{3^2+4^2}=\frac{15^2}{25}=\frac{225}{25}=9\)
\(\frac{AB^2}{3^2}=9\Rightarrow AB^2=81\Rightarrow AB=\sqrt{81}=9cm\)
\(\frac{AC^2}{4^2}=9\Rightarrow AC^2=144\Rightarrow AC=\sqrt{144}=12cm\)
Ý b) tương tự nhé
a) Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{AB}{8}=\frac{AC}{15}\Rightarrow\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{51^2}{289}\)
\(\Rightarrow\frac{AB}{8}=\frac{AC}{15}=\frac{51}{17}\Rightarrow\hept{\begin{cases}AB=24\left(cm\right)\\AC=45\left(cm\right)\end{cases}}\)
b) \(S_{ABC}=\frac{AB.AC}{2}=\frac{24.45}{2}=300\left(cm^2\right)\)
A B C
Xét tam giác ABC vuông tại A theo định lí Py-ta-go ta đc
AB2+AC2=BC2=2601(1)
Lại có\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB^2}{AC^2}=\frac{64}{225}\)
\(\Rightarrow AC^2=\frac{AB^2.225}{64}\)
Thay vào (1) ta đc
\(AB^2+\frac{AB^2.225}{64}=2601\)
\(\Rightarrow\frac{AB^2.289}{64}=2601\Rightarrow AB^2=576\)
\(\Rightarrow\hept{\begin{cases}AB=\sqrt{576}=24\left(cm\right)\\AC^2=BC^2-AB^2=2025\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}AB=24\left(cm\right)\\AC=45\left(cm\right)\end{cases}}\)
Vậy ........
b, ta có \(S_{ABC}=\frac{AB.AC}{2}=\frac{24.45}{2}=540\left(cm^2\right)\)
tk mk nhé