\(\frac{AB}{AC}=\frac{8}{15}\) và BC = 51cm

a) Tính...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2019

a) Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{AB}{8}=\frac{AC}{15}\Rightarrow\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{51^2}{289}\)
\(\Rightarrow\frac{AB}{8}=\frac{AC}{15}=\frac{51}{17}\Rightarrow\hept{\begin{cases}AB=24\left(cm\right)\\AC=45\left(cm\right)\end{cases}}\)
b) \(S_{ABC}=\frac{AB.AC}{2}=\frac{24.45}{2}=300\left(cm^2\right)\)
 

19 tháng 2 2019

A B C

Xét tam giác ABC vuông tại A theo định lí Py-ta-go ta đc

AB2+AC2=BC2=2601(1)

Lại có\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB^2}{AC^2}=\frac{64}{225}\)

\(\Rightarrow AC^2=\frac{AB^2.225}{64}\)

Thay vào (1) ta đc

\(AB^2+\frac{AB^2.225}{64}=2601\)

\(\Rightarrow\frac{AB^2.289}{64}=2601\Rightarrow AB^2=576\)

\(\Rightarrow\hept{\begin{cases}AB=\sqrt{576}=24\left(cm\right)\\AC^2=BC^2-AB^2=2025\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}AB=24\left(cm\right)\\AC=45\left(cm\right)\end{cases}}\)

Vậy ........

b, ta có \(S_{ABC}=\frac{AB.AC}{2}=\frac{24.45}{2}=540\left(cm^2\right)\)

tk mk nhé

10 tháng 2 2019

Bài giải: Ta có: AB/AC = 8/15 => AB/8 = AC/15

Áp dụng định lí Pi-ta-go vào t/giác ABC , ta có:

      BC2 = AB2 + AC2 

=> 512 = AB2 + AC2 

=> 2601 = AB2 + AC2

Áp dụng t/c của dãy tỉ số bằng nhau

Từ \(\frac{AB}{8}=\frac{AC}{15}\)=> \(\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{2601}{289}=9\)

=> \(\hept{\begin{cases}\frac{AB^2}{64}=9\\\frac{AC^2}{225}=9\end{cases}}\)=> \(\hept{\begin{cases}AB^2=9.64=576\\AC^2=9.225=2025\end{cases}}\)=> \(\hept{\begin{cases}AB=24\\AC=45\end{cases}}\)

Vậy ...

b) tự lm

10 tháng 2 2019

\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB}{8}=\frac{AC}{15}\)

\(\Leftrightarrow\left(\frac{AB}{8}\right)^2=\left(\frac{AC}{15}\right)^2=\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{BC^2}{289}=\frac{51^2}{289}=9\)

\(\Rightarrow+)\frac{AB^2}{64}=9\Rightarrow AB=24\left(cm\right)\)

        \(+)\frac{AC^2}{225}=9\Rightarrow25\left(cm\right)\)

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

25 tháng 2 2018

Từ gt: \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB^2}{AC^2}=\frac{9}{16}\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}.\)

Theo Py-ta-go ta có: \(AB^2+AC^2=BC^2.\)

\(\Leftrightarrow AB^2+AC^2=15^2=225\)

áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{225}{25}=9.\)

\(\Rightarrow AB^2=9\cdot9=81\Rightarrow AB=9\)

\(\Rightarrow AC^2=9\cdot16=144\Rightarrow AC=12\)

VẬY AB=9 CM và AC=12CM

21 tháng 3 2020

Cho tam giác ABC vuông tại A có AB/AC = 3/4,BC = 15cm,Tính AB và AC,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

hok tốt

a) Theo bài ra, ta có:

\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB}{8}=\frac{AC}{15}=k\Rightarrow\left\{{}\begin{matrix}AB=8k\\AC=15k\end{matrix}\right.\)

Áp dụng định lý Pytago vào △ABC vuông tại A, ta có:

\(BC^2=AB^2+AC^2\Rightarrow51^2=\left(8k\right)^2+\left(15k\right)^2=64k^2+225k^2=289k^2\Rightarrow2601=289k^2\Rightarrow k^2=9\Rightarrow k=3\left(k>0\right)\)\(\Rightarrow\left\{{}\begin{matrix}AB=8.k=8.3=24\left(cm\right)\\AC=15.k=15.3=45\left(cm\right)\end{matrix}\right.\)

b)Ta có:

S△ABC=\(\frac{AB.AC}{2}=\frac{24.45}{2}=540\left(cm^2\right)\)

11 tháng 5 2016

\(\frac{AB}{AC}=\frac{5}{2}\Rightarrow AB=\frac{5}{2}AC\)

Áp dụng định lí pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

=>AB2+AC2=262 (1)

Thay \(AB=\frac{5}{2}AC\) vào (1) ta được:

\(\left(\frac{5}{2}AC\right)^2+AC^2=26^2\Rightarrow\frac{25}{4}AC^2+AC^2=676\)

=>\(\frac{29}{4}AC^2=676\Rightarrow AC^2\approx93,2\Rightarrow AC\approx9,7\)

11 tháng 5 2016

Sửa 

\(\frac{AB}{AC}=\frac{5}{2}\Rightarrow AB=\frac{5}{2}AC\)

Áp dụng định lí pytago vào tam giác ABC vuông tai A ta có:

\(AB^2+AC^2=BC^2\Rightarrow\frac{25}{4}AC^2+AC^2=26^2\Rightarrow\frac{29}{4}AC^2=676\Rightarrow AC^2\approx93,2\)

\(\Rightarrow AC\approx9,7\left(cm\right)\)

=>\(AB=\frac{5}{2}AC=\frac{5}{2}.9,7=24,25\left(cm\right)\)