K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2021

A B C M I J K H

Kẻ đường cao AH của tam giác ABC, ta có:

\(MI^2+MJ^2+MK^2=MI^2+MA^2=\left(MI+MA\right)^2-2MI.MA\ge\frac{\left(MI+MA\right)^2}{2}\)

Lại có: \(MI+MA\ge AI\ge AH\), cho nên: \(MI^2+MJ^2+MK^2\ge\frac{AH^2}{2}\)(không đổi)

Dấu "=" xảy ra <=> M là trung điểm AH.

31 tháng 1 2018

Ta tính diện tích tam giác ABC đều, cạnh bằng 3cm.

Kẻ AH vuông góc BC tại H. 

A B C H

Theo đó ta có tam giác ABC đều, AH là đường cao nên đồng thời là trung tuyến.

Vậy thì \(BH=HC=1,5cm\)

Áp dụng định lý Pi-ta-go cho tam giác vuông AHC, ta có \(AH^2+HC^2=AC^2\Rightarrow AH^2=3^2-1,5^2=6,75\)

\(\Rightarrow AH=\sqrt{6,75}\left(cm\right)\)

Vậy thì \(S_{ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}.3.\sqrt{6,75}=\frac{3}{2}\sqrt{6,75}\left(cm^2\right)\)   (1)

A B C M I J K

Lại có \(S_{ABC}=S_{MAB}+S_{MBC}+S_{MCA}=\frac{1}{2}AB.MI+\frac{1}{2}BC.MK+\frac{1}{2}AC.MJ\)

\(=\frac{1}{2}.3.\left(MI+MJ+MK\right)=\frac{3}{2}\left(MI+MJ+MK\right)\)   (cm2)     (2)

Từ (1) và (2) suy ra \(MI+MJ+MK=\sqrt{6,75}\left(cm\right)\) 

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

=>ΔABM=ΔACM

b: ΔABM=ΔACM

=>góc AMB=góc AMC=1/2*180=90 độ

BM=CM=30/2=15cm

AM=căn 17^2-15^2=8cm

c: góc BAC=180-2*30=120 độ

=>góc IMK=60 độ

Xét ΔAIM vuông tại I và ΔAKM vuông tại K có

AM chung

góc IAM=góc KAM

=>ΔAIM=ΔAKM

=>MI=MK

mà góc IMK=60 độ

nên ΔIMK đều