Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta tính diện tích tam giác ABC đều, cạnh bằng 3cm.
Kẻ AH vuông góc BC tại H.
A B C H
Theo đó ta có tam giác ABC đều, AH là đường cao nên đồng thời là trung tuyến.
Vậy thì \(BH=HC=1,5cm\)
Áp dụng định lý Pi-ta-go cho tam giác vuông AHC, ta có \(AH^2+HC^2=AC^2\Rightarrow AH^2=3^2-1,5^2=6,75\):
\(\Rightarrow AH=\sqrt{6,75}\left(cm\right)\)
Vậy thì \(S_{ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}.3.\sqrt{6,75}=\frac{3}{2}\sqrt{6,75}\left(cm^2\right)\) (1)
A B C M I J K
Lại có \(S_{ABC}=S_{MAB}+S_{MBC}+S_{MCA}=\frac{1}{2}AB.MI+\frac{1}{2}BC.MK+\frac{1}{2}AC.MJ\)
\(=\frac{1}{2}.3.\left(MI+MJ+MK\right)=\frac{3}{2}\left(MI+MJ+MK\right)\) (cm2) (2)
Từ (1) và (2) suy ra \(MI+MJ+MK=\sqrt{6,75}\left(cm\right)\)
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
=>ΔABM=ΔACM
b: ΔABM=ΔACM
=>góc AMB=góc AMC=1/2*180=90 độ
BM=CM=30/2=15cm
AM=căn 17^2-15^2=8cm
c: góc BAC=180-2*30=120 độ
=>góc IMK=60 độ
Xét ΔAIM vuông tại I và ΔAKM vuông tại K có
AM chung
góc IAM=góc KAM
=>ΔAIM=ΔAKM
=>MI=MK
mà góc IMK=60 độ
nên ΔIMK đều
A B C M I J K H
Kẻ đường cao AH của tam giác ABC, ta có:
\(MI^2+MJ^2+MK^2=MI^2+MA^2=\left(MI+MA\right)^2-2MI.MA\ge\frac{\left(MI+MA\right)^2}{2}\)
Lại có: \(MI+MA\ge AI\ge AH\), cho nên: \(MI^2+MJ^2+MK^2\ge\frac{AH^2}{2}\)(không đổi)
Dấu "=" xảy ra <=> M là trung điểm AH.