Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC=AD+DC
=3+5
=8(cm)
Xét ΔBAC có BD là phân giác
nên \(\dfrac{AB}{AD}=\dfrac{CB}{CD}\)
=>\(\dfrac{AB}{3}=\dfrac{CB}{5}=k\)
=>AB=3k; CB=5k
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(\left(5k\right)^2=\left(3k\right)^2+8^2\)
=>\(16k^2=64\)
=>\(k^2=4\)
=>k=2
=>AB=3*2=6cm; BC=2*5=10(cm)
b: Xét ΔBAC có BE là phân giác góc ngoài tại B
nên \(\dfrac{EA}{EC}=\dfrac{BA}{BC}\)
=>\(\dfrac{EA}{EC}=\dfrac{3}{5}\)
=>\(\dfrac{EA}{3}=\dfrac{EC}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{EC}{5}=\dfrac{EA}{3}=\dfrac{EC-EA}{5-3}=\dfrac{AC}{2}=\dfrac{8}{2}=4\)
=>EA=12(cm)
a) Xét ΔABC có
\(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}\simeq53^0\)
\(\Leftrightarrow\widehat{B}=37^0\)
b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{4}=\dfrac{CD}{3}\)
mà BD+CD=5
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{4}=\dfrac{CD}{3}=\dfrac{BD+CD}{4+3}=\dfrac{5}{7}\)
Do đó: \(BD=\dfrac{20}{7}cm;CD=\dfrac{15}{7}cm\)
a: BC=căn 6^2+8^2=10cm
Xét ΔABC vuông tại A có sin C=AB/BC=3/5
nên góc C=37 độ
=>góc B=53 độ
b: Xét ΔABC có AD là phân giác
nên DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=10/7
=>DB=30/7cm; DC=40/7cm
c: Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
AD là phân giác của góc EAF
=>AEDF là hình vuông
cách giải như sau:
EB là đường phân giác ngoài của ^B nên vg với đường phân giác trong BD
BD phân giác trong ^B
=> BA / BC = DA / DC, đặc AB = a => BC = căn(a^2 + (3+ 5)^2)
=> a/ căn( a^2 + 8^2) = 3/5
bình phương 2 vế:
a^2 /( a^2 + 8) = 9/25
<> 25a^2 = 9a^2 + 576
<> a^2 = 36 <> a= 6 ( do a hk âm )
=> AB = 6 => BC = 10
do tg EBD vuông tai B đường cao BA
=> AB^2 = AE.AD
=> AE = AB^2 / AD = 36 / 3 = 12
co ai giai bai nay ho tui ko :14.14.12.12.14.12.501