K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

25 tháng 12 2016

1 2 3 A B C D D M 1 2

Ta có hình vẽ trên :

a) Xét 2 tam giác ABM và tam giác ACM có:

AB = AC (gt)

AM là cạnh chung

BM = MC (gt)

=>. tam giác ABM = tam giác ACM (c-c-c)

=> góc A1 = góc A2 (2 góc tương ứng)

=> AM là tia phân giác của góc BAC

b) Vì tam giác ABM = tam giác ACM

nên góc AMB = góc AMC (2 góc tương ứng)

mà góc AMB + góc AMC = 180 độ

=> góc AMB = góc AMC = 180/ 2 = 90 độ

=> AM vuông góc vói BC

c) Xét 2 tam giác vuông AMB và tam giác và tam giác DMC có:

MA =DM (gt)

BM = MC (gt)

=> tam giác AMB = tam giác DMC (2 cạnh góc vuông)

=> AB = DC (2 cạnh tương ứng)

 

 

 

 

26 tháng 12 2021

help me

 

26 tháng 12 2021

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường phân giác

25 tháng 12 2018

Tự vẽ hình (câu c thiếu điều kiện để vẽ điểm F)
a) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
AB=AC
BM=MC
AM chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(C.C.C\right)\)
b) \(\Delta ABC\)vuông tạ A (AB=AC). M là trung điểm của BC => AM Vừa là đường cao, đường trung trực, đường phân giác
c) Thiếu điều kiện vẽ điểm F

15 tháng 12 2017

A B C D K

a) Xét tam giác ABK và ACK có :

AK chung

BK = CK (gt)

AB = AC (gt)

\(\Rightarrow\Delta ABK=\Delta ACK\left(c-c-c\right)\)

\(\Rightarrow\widehat{BAK}=\widehat{CAK}\) (Hai góc tương ứng)

hay AK là phân giác góc BAC.

b)

+) Do \(\Delta ABK=\Delta ACK\Rightarrow\widehat{BKA}=\widehat{CKA}\)(Hai góc tương ứng)

Chúng lại là hai góc kề bù nên \(\widehat{BKA}=\widehat{CKA}=\frac{180^o}{2}=90^o\)

Vậy thì \(\widehat{BKA}=\widehat{BCD}\left(=90^o\right)\) , chúng lại là hai góc đồng vị nên AK // DC.

+) Do AK là phân giác góc BAC nên \(\widehat{BAK}=\frac{\widehat{BAC}}{2}=45^o\)

\(\Rightarrow\widehat{BDC}=\widehat{BAK}=45^o\) (Hai góc đồng vị)

c) Ta có \(\widehat{ABK}=45^o\Rightarrow\widehat{ACB}=45^o\Rightarrow\widehat{ACD}=\widehat{BCD}-\widehat{ACB}=45^o\)

Xét tam giác ACB và ACD có:

AC chung

\(\widehat{ACD}=\widehat{ACB}\left(=45^o\right)\)

\(\widehat{BAC}=\widehat{DAC}\left(=90^o\right)\)

\(\Rightarrow\Delta ACB=\Delta ACD\left(g-c-g\right)\Rightarrow AB=AD\)

Vậy A là trung điểm BD.

15 tháng 12 2019

M A B C N H F D

a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:

^AHB = ^DHB ( 1v )

HA = HD ( giả thiết )

MH chung 

=> \(\Delta\)AHB = \(\Delta\)DHB  ( c.g.c) 

b) Từ (a) => ^ABH = ^DHB  => BH là phân giác ^ABD

Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC 

=> BC là phân giác ^ABD

c) NF vuông BC 

AH vuông BC 

=> NF // AH 

=> ^NFM = ^HAM ( So le trong )

Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )

=> \(\Delta\)NFM = \(\Delta\)HAM  ( g.c.g)

=> NF = AH ( 2) 

Từ ( a) => AH = HD ( 3)

Từ (2) ; (3) => NF = HD

19 tháng 2 2021

ME TOOgianroikhocroi

23 tháng 1 2022

a.
Xét tam giác AHM và tam giác DCM có:
AM = DM (gt)
AMH = DMC (2 góc đối đỉnh)
MH = MC (M là trung điểm của HC)
=> Tam giác AHM = Tam giác DCM (c.g.c)
b.
AHM = DCM (tam giác AHM = tam giác DCM)
mà AHM = 90độ
=> DCM = 90độ
Tam giác ABC vuông tại A có:
ABC + ACB = 90độ
60độ  + ACB = 90độ
ACB = 90  - 60
ACB = 30độ
ACD = ACB + DCM = 30  + 90  = 120độ

22 tháng 2 2019

a) C/M tam giác AHM= tam giác DCM

Xét tam giác AHM và tam giác DCM, ta có:

MA=MD (gt)
góc AMH= góc DMC (đđ)

MH=MC (gt)

Vậy tam giác AHM= tam giác DCM (c-g-c)

b) Tính góc ACD

Ta có tam giác ABC vuông tại A có góc B=600 nên góc ACB=300

Lại có góc MCD= góc AHM = 900 (hai tam giác bằng nhau)

Vậy góc ACD= 300 + 900 = 1200

c) C/M AK=CD

Trong tam giác AHK, ta có AN đường cao đồng thời là trung tuyến ( AN vuông góc HK và NH=NK)

Nên tam giác AHK cân tại A

Suy ra AK=AH

Mà AH=CD (hai tam giác bằng nhau)

Vậy AK=CD

d) C/M K, H, D thẳng hàng

Ta có tam giác AHC= tam giác DCH ( c-g-c)

Nên góc ACH= góc DHC

Mà hai góc này ở vị trí so le trong

Suy ra AC//HD

Lại có HK//AC ( cùng vuông góc với AB)

Vậy K, H, D thẳng hàng