Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 2 3 A B C D D M 1 2
Ta có hình vẽ trên :
a) Xét 2 tam giác ABM và tam giác ACM có:
AB = AC (gt)
AM là cạnh chung
BM = MC (gt)
=>. tam giác ABM = tam giác ACM (c-c-c)
=> góc A1 = góc A2 (2 góc tương ứng)
=> AM là tia phân giác của góc BAC
b) Vì tam giác ABM = tam giác ACM
nên góc AMB = góc AMC (2 góc tương ứng)
mà góc AMB + góc AMC = 180 độ
=> góc AMB = góc AMC = 180/ 2 = 90 độ
=> AM vuông góc vói BC
c) Xét 2 tam giác vuông AMB và tam giác và tam giác DMC có:
MA =DM (gt)
BM = MC (gt)
=> tam giác AMB = tam giác DMC (2 cạnh góc vuông)
=> AB = DC (2 cạnh tương ứng)
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
Tự vẽ hình (câu c thiếu điều kiện để vẽ điểm F)
a) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
AB=AC
BM=MC
AM chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(C.C.C\right)\)
b) \(\Delta ABC\)vuông tạ A (AB=AC). M là trung điểm của BC => AM Vừa là đường cao, đường trung trực, đường phân giác
c) Thiếu điều kiện vẽ điểm F
A B C D K
a) Xét tam giác ABK và ACK có :
AK chung
BK = CK (gt)
AB = AC (gt)
\(\Rightarrow\Delta ABK=\Delta ACK\left(c-c-c\right)\)
\(\Rightarrow\widehat{BAK}=\widehat{CAK}\) (Hai góc tương ứng)
hay AK là phân giác góc BAC.
b)
+) Do \(\Delta ABK=\Delta ACK\Rightarrow\widehat{BKA}=\widehat{CKA}\)(Hai góc tương ứng)
Chúng lại là hai góc kề bù nên \(\widehat{BKA}=\widehat{CKA}=\frac{180^o}{2}=90^o\)
Vậy thì \(\widehat{BKA}=\widehat{BCD}\left(=90^o\right)\) , chúng lại là hai góc đồng vị nên AK // DC.
+) Do AK là phân giác góc BAC nên \(\widehat{BAK}=\frac{\widehat{BAC}}{2}=45^o\)
\(\Rightarrow\widehat{BDC}=\widehat{BAK}=45^o\) (Hai góc đồng vị)
c) Ta có \(\widehat{ABK}=45^o\Rightarrow\widehat{ACB}=45^o\Rightarrow\widehat{ACD}=\widehat{BCD}-\widehat{ACB}=45^o\)
Xét tam giác ACB và ACD có:
AC chung
\(\widehat{ACD}=\widehat{ACB}\left(=45^o\right)\)
\(\widehat{BAC}=\widehat{DAC}\left(=90^o\right)\)
\(\Rightarrow\Delta ACB=\Delta ACD\left(g-c-g\right)\Rightarrow AB=AD\)
Vậy A là trung điểm BD.
M A B C N H F D
a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:
^AHB = ^DHB ( 1v )
HA = HD ( giả thiết )
MH chung
=> \(\Delta\)AHB = \(\Delta\)DHB ( c.g.c)
b) Từ (a) => ^ABH = ^DHB => BH là phân giác ^ABD
Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC
=> BC là phân giác ^ABD
c) NF vuông BC
AH vuông BC
=> NF // AH
=> ^NFM = ^HAM ( So le trong )
Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )
=> \(\Delta\)NFM = \(\Delta\)HAM ( g.c.g)
=> NF = AH ( 2)
Từ ( a) => AH = HD ( 3)
Từ (2) ; (3) => NF = HD
a.
Xét tam giác AHM và tam giác DCM có:
AM = DM (gt)
AMH = DMC (2 góc đối đỉnh)
MH = MC (M là trung điểm của HC)
=> Tam giác AHM = Tam giác DCM (c.g.c)
b.
AHM = DCM (tam giác AHM = tam giác DCM)
mà AHM = 90độ
=> DCM = 90độ
Tam giác ABC vuông tại A có:
ABC + ACB = 90độ
60độ + ACB = 90độ
ACB = 90 - 60
ACB = 30độ
ACD = ACB + DCM = 30 + 90 = 120độ
a) C/M tam giác AHM= tam giác DCM
Xét tam giác AHM và tam giác DCM, ta có:
MA=MD (gt)
góc AMH= góc DMC (đđ)
MH=MC (gt)
Vậy tam giác AHM= tam giác DCM (c-g-c)
b) Tính góc ACD
Ta có tam giác ABC vuông tại A có góc B=600 nên góc ACB=300
Lại có góc MCD= góc AHM = 900 (hai tam giác bằng nhau)
Vậy góc ACD= 300 + 900 = 1200
c) C/M AK=CD
Trong tam giác AHK, ta có AN đường cao đồng thời là trung tuyến ( AN vuông góc HK và NH=NK)
Nên tam giác AHK cân tại A
Suy ra AK=AH
Mà AH=CD (hai tam giác bằng nhau)
Vậy AK=CD
d) C/M K, H, D thẳng hàng
Ta có tam giác AHC= tam giác DCH ( c-g-c)
Nên góc ACH= góc DHC
Mà hai góc này ở vị trí so le trong
Suy ra AC//HD
Lại có HK//AC ( cùng vuông góc với AB)
Vậy K, H, D thẳng hàng