Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O E F S T I Q K D N J L P M G R
a) +) Dễ thấy: ^BAD = ^CAO (Cùng phụ ^ABC). Mà ^BAI = ^CAI nên ^OAI = ^DAI
Suy ra: ^OAI = ^DAO/2 = ^BAI - ^BAD = ^BAC/2 - 900 + ^ABC = ^BAC/2 - (^BAC+^ABC+^ACB)/2 + ^ABC
= (^ABC + ^ACB)/2 = \(\frac{\alpha-\beta}{2}=\frac{\alpha^2-\beta^2}{2\left(\alpha+\beta\right)}=\frac{\alpha^2-\beta^2}{sđ\widebat{BAC}}\) (đpcm).
+) Kẻ đường kính AG của đường tròn (O). Dễ thấy: Tứ giác BICJ nội tiếp, gọi (BICJ) cắt AC tại R khác C.
Do AK=2R nên AK = AG. Ta có: ^ARB = ^ARI + ^BRI = ^IBC + ^ICB = (^ABC+^ACB)/2 = ^ABI + ^IBC = ^ABR
=> \(\Delta\)BAR cân tại A => AB = AR. Kết hợp với AK=AG, ^BAG = ^RAK (cmt) => \(\Delta\)ABG = \(\Delta\)ARK (c.g.c)
=> ^ABG = ^ARK = 900 => ^KRC = ^KDC = 900 => Tứ giác DKCR nội tiếp
=> AD.AK = AR.AC = AI.AJ => Tứ giác DIJK nội tiếp (đpcm).
b) \(\Delta\)KAG cân tại A có phân giác AI => AI vuông góc KG hay AM vuông góc KG. Mà AM vuông góc GM
Nên K,G,M thẳng hàng => K,M,G,N thẳng hàng => AM vuông góc KN tại M
Ta thấy: M là trung điểm IJ, KM vuông góc IJ tại M nên \(\Delta\)KIJ cân tại K
Xét đường tròn (KIJ): KI = KJ, KN vuông góc IJ => KN là đường kính của (KIJ)
Mà D thuộc đường tròn (KIJ) (cmt) => ^KDN = 900 => ND vuông góc AK tại D => N,L,D thẳng hàng
Xét \(\Delta\)AKN có: AM vuông góc KN, ND vuông góc AK, AM và ND cùng đi qua L
=> L là trực tâm \(\Delta\)AKN => KL vuông góc AN (đpcm).
c) Gọi P là trực tâm của \(\Delta\)AJQ
Do \(\Delta\)KIJ cân tại K => ^KIJ = ^KJI. Có tứ giác DIJK nội tiếp => ^KIJ = ^KDJ => ^KDJ = ^KJI
Từ đó: \(\Delta\)DKJ ~ \(\Delta\)JKA (g.g) => KJ2 = KD.KA => KQ2 = KD.KA => \(\Delta\)KQD ~ \(\Delta\)KAQ (c.g.c)
Suy ra: ^QDJ = ^KDQ + ^KDJ = ^AQK + ^AJK = 1800 - ^QAJ = 1800 - ^QPJ => Tứ giác PQDJ nội tiếp
^PDJ = ^PQJ => ^PDK + ^KDJ = ^PDK + ^QJA = ^PQJ => ^PDK = ^PQJ - ^QJA = 900
=> PD vuông góc AD. Mà BC vuông góc AD tại D nên PD trùng BC hay P nằm trên BC (đpcm).
d) Ta thấy: ^ABC > ^ACB (\(\alpha>\beta\)) => ^BAD < ^CAD. Lại có: ^BAI = ^CAI, ^BAD + ^CAD = ^BAI + ^CAI = ^BAC
Suy ra ^BAD < ^BAI => B và I nằm khác khía so với AD => D thuộc [BF]
Hạ IS, IT vuông góc với AC,AB thì F thuộc [DT] => Thứ tự các điểm trên BC là B,D,F,T,C. Do đó: ^IFC = ^DFK < 900
Ta xét thứ tự các điểm trên cạnh AC:
+) A,S,E,C: Vì IS vuông góc AC, theo thứ tự này thì ^IEC > 900. Cũng dễ có: \(\Delta\)IES = \(\Delta\)IFT (Ch.cgv)
=> ^IES = ^IFT < 900 => ^IFT + ^IEC = 1800 => Tứ giác FIEC nội tiếp => ^ECF = ^DIK
Mà ^DIK = ^DJK = ^DAI = \(\frac{\alpha-\beta}{2}\) nên \(\beta=\frac{\alpha-\beta}{2}\Rightarrow\alpha=3\beta\) (*)
+) A,E,S,C: Trong TH này thì ^IEC < 900 => ^IFT + ^IEC < 1800 => ^ECF + ^EIF > 1800
=> ^ECF > ^DIK hay \(\beta>\frac{\alpha-\beta}{2}\Rightarrow\alpha< 3\beta\) (**)
Từ (*) và (**) suy ra: \(\alpha\le3\beta\) (đpcm).
a) Xét (O) có :
AB là tiếp tuyến tại B
AC là tiếp tuyến tại C
AB cắt AC tại A
\(\Rightarrow\widehat{ABO}=\widehat{ACO}=90^o\)và OA là p/g \(\widehat{BOC}\)
Xét tg ABOC có \(\widehat{ABO}+\widehat{ACO}=180^o\)Mà 2 góc này đối nhau
\(\Rightarrow\)ABOC là tg nt
b) Xét (O) có
\(\widehat{ABE}\)là góc tạo bởi tiếp tuyến AB và dây BE
\(\widehat{BDE}\)là góc nt chắn cung BE
\(\Rightarrow\widehat{ABE}=\widehat{BDE}=\frac{1}{2}sđ\widebat{BE}\)
Xét \(\Delta ABEvà\Delta ADB:\)
\(\widehat{BAD}\)chung
\(\widehat{ABE}=\widehat{BDE}\)
\(\Rightarrow\Delta ABE\infty\Delta ADB\left(gg\right)\)
\(\Rightarrow\frac{AB}{AD}=\frac{AE}{AB}\Rightarrow AB^2=AD.AE\)
c) Vì OA là p/g \(\widehat{BOC}\Rightarrow\widehat{BOA}=\widehat{COA}=\frac{\widehat{BOC}}{2}\)
Do ABOC là tg nt\(\Rightarrow\widehat{BOA}=\widehat{BCA}\)(cùng chắn cung AB)
Suy ra \(\widehat{AOC}=\widehat{ACB}\)
Đường tròn c: Đường tròn qua B_1 với tâm O Đường thẳng q: Tiếp tuyến của c qua A Đường thẳng q: Tiếp tuyến của c qua A Đoạn thẳng h: Đoạn thẳng [A, E] Đoạn thẳng i: Đoạn thẳng [B, E] Đoạn thẳng j: Đoạn thẳng [C, E] Đoạn thẳng k: Đoạn thẳng [O, C] Đoạn thẳng l: Đoạn thẳng [O, B] Đoạn thẳng m: Đoạn thẳng [A, B] Đoạn thẳng n: Đoạn thẳng [A, C] Đoạn thẳng p: Đoạn thẳng [B, D] Đoạn thẳng a: Đoạn thẳng [B, P] Đoạn thẳng b: Đoạn thẳng [C, Q] Đoạn thẳng d: Đoạn thẳng [P, Q] Đoạn thẳng g_1: Đoạn thẳng [B, C] Đoạn thẳng i_1: Đoạn thẳng [M, A] Đoạn thẳng k_1: Đoạn thẳng [O, M] O = (-0.28, -0.29) O = (-0.28, -0.29) O = (-0.28, -0.29) Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm E: Giao điểm của f, g Điểm E: Giao điểm của f, g Điểm E: Giao điểm của f, g Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm P: Giao điểm của r, s Điểm P: Giao điểm của r, s Điểm P: Giao điểm của r, s Điểm Q: Giao điểm của r, t Điểm Q: Giao điểm của r, t Điểm Q: Giao điểm của r, t Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm F: Giao điểm của e, d Điểm F: Giao điểm của e, d Điểm F: Giao điểm của e, d
a. Ta thấy ngay tứ giác OBEC có hai góc vuông đối nhau nên nó là tứ giác nội tiếp.
b. Câu này cô thấy cần sửa đề thành AB.AP = AD.AE mới đúng.
Gọi Aq là tiếp tuyến tại A của đường tròn (O). Khi đó ta có: \(\widehat{APE}=\widehat{BAq}\) (so le trong)
Mà \(\widehat{BAq}=\widehat{BDA}\) (Cùng chắn cung BA) nên \(\widehat{APE}=\widehat{BDA}\)
Vậy thì \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{AB}{AE}=\frac{AD}{AP}\Rightarrow AB.AP=AE.AD\)
c. +) Ta thấy \(\Delta BDE\sim\Delta ABE\left(g-g\right)\Rightarrow\frac{BD}{AB}=\frac{BE}{AE}\)
Tương tự \(\Delta CDE\sim\Delta ACE\left(g-g\right)\Rightarrow\frac{CD}{AC}=\frac{DE}{AE}\)
Mà BE = CE nên \(\frac{BD}{AB}=\frac{CD}{AC}\)
Lại có \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{BD}{EP}=\frac{AB}{AE}\Rightarrow EP=\frac{BD.AE}{AB}\)
Tương tự \(\Delta ACD\sim\Delta AEQ\left(g-g\right)\Rightarrow\frac{AC}{AE}=\frac{CD}{EQ}\Rightarrow EQ=\frac{CD.AE}{AC}=\frac{BD.AE}{AB}=EP\)
Vậy EP = EQ.
+) Ta thấy ngay \(\Delta ABC\sim\Delta AQP\Rightarrow\frac{BC}{QP}=\frac{AC}{AP}\Rightarrow\frac{BC:2}{QP:2}=\frac{AC}{QP}\)
\(\Rightarrow\frac{MC}{PE}=\frac{AC}{AP}\)
Lại có \(\widehat{ACM}=\widehat{APE}\) (Cùng bằng \(\widehat{BDA}\))
Từ đó suy ra \(\Delta AMC\sim\Delta AEP\Rightarrow\widehat{MAC}=\widehat{PAE}\)
d. Ta có BD.AC = AB.CD
Lại có do ABCD là tứ giác nội tiếp nên
AD.BC = AB.CD + AC.BD = 2AB.CD (Định lý Ptoleme) \(\Rightarrow2MC.AD=2AB.CD\Rightarrow MC.AD=AB.CD\)
\(\Rightarrow\frac{MC}{AB}=\frac{CD}{AD}\)
Lại thấy \(\widehat{BAD}=\widehat{BCD}\Rightarrow\Delta BAD\sim\Delta MCD\left(c-g-c\right)\)
Mà \(\Delta BAD\sim\Delta MAC\Rightarrow\Delta MCD\sim\Delta MAC\)
\(\Rightarrow\frac{MC}{MA}=\frac{MD}{MC}\Rightarrow MA.MD=MC^2=\frac{BC^2}{4}.\)
Hình vẽ:(không chắc nó có hiện ra hay k bạn thông cảm)Câu a)
Dễ chứng minh ATNO là tứ giác nội tiếp
Đồng thời MB=MC nên OM vuông góc BC hay OMNT là tứ giác nội tiếp
Suy ra: A,O,M,N,T cùng thuộc một đường tròn(đường kính OT)
Có OMNT là tứ giác nội tiếp suy ra: \(\widehat{BMN}=\widehat{TON}\)
Mà \(\widehat{TON}=\widehat{TAN}=\widehat{TNA}\)
Cho nên: \(\widehat{BMN}=\widehat{TNA}\)
Hơn nữa: \(\widehat{TNA}=\widehat{ACN}\)(cùng bằng một nửa số đo cung ABN)
\(\Rightarrow\widehat{BMN}=\widehat{ACN}\)
Xét tam giác BMN và tam giác ACN có: \(\hept{\begin{cases}\widehat{BMN}=\widehat{ACN}\\\widehat{MBN}=\widehat{CAN}\end{cases}}\)
Do đó: \(\Delta BMN~\Delta ACN\left(g.g\right)\)\(\Rightarrow\frac{BN}{AN}=\frac{MB}{AC}=\frac{MC}{AC}\)
Chứng minh tiếp \(\Delta ABN~\Delta AMC\left(c.g.c\right)\)từ tỉ số trên và \(\widehat{ANB}=\widehat{ACM}\)
Vậy \(\widehat{BAN}=\widehat{CAM}\)
___________________________________________________________________________________________________________
Câu b) Hình vẽ cho câu b): (không hiện ra thì bn thông cảm do paste từ GeoGebra ra)
Gọi giao DK cắt BF tại P
Ta có: \(\Delta TNB~\Delta TCN\)\(\Rightarrow\frac{TN}{TC}=\frac{NB}{CN}\)
Tương tự: \(\Delta TAB~\Delta TCA\)\(\Rightarrow\frac{TA}{TC}=\frac{AB}{AC}\)
Do TA=TN nên \(\frac{NB}{NC}=\frac{AB}{AC}\)(1)
Lại có: ADKC là tứ giác nội tiếp \(\Rightarrow\widehat{BNA}=\widehat{BCA}=\widehat{DKA}\Rightarrow BN//KP\)
\(\Delta FPD~\Delta NBA\Rightarrow\frac{PF}{NB}=\frac{PD}{AB}\)(2)(bn tự CM)
\(\Delta DBP~\Delta ANC\Rightarrow\frac{PB}{NC}=\frac{PD}{AC}\)(3)(bn tự CM)
Từ (1);(2) và (3) suy ra đpcm
P/s: Bài làm dài quá mik làm biếng không check lại nên có thể có sai sót nha.
a,Xét đường tròn (O) có:
MB là tiếp tuyến của đường tròn (gt) => \(\widehat{OBM}=90^0\)
Mặt khác E là trung điểm của AD (gt) => \(OE\perp AD\) => \(\widehat{OEM}=90^0\) => \(\widehat{OBM}=\widehat{OEM}\)
Xét tứ giác OEBM có: \(\widehat{OBM}=\widehat{OEM}\) (cmt)
=> OEBM là tứ giác nội tiếp
b, Xét đường tròn (O), tiếp tuyến MB, dây cung BD có:
\(\widehat{MBD}\) là góc tạo bởi tiếp tuyến và dây cung và \(\widehat{MAB}\) là góc nội tiếp cùng chắn cung BD => \(\widehat{MBD}=\widehat{MAB}\)
Xét \(\Delta MBD\) và \(\Delta MAB\) có:
\(\widehat{MBD}=\widehat{MAB}\) (cmt)
\(\widehat{M}\) là góc chung
=> \(\Delta MBD\) ~ \(\Delta MAB\left(g.g\right)\)
=> \(\dfrac{MB}{MA}=\dfrac{MD}{MB}\) => \(MB^2=MA.MD\)
c, Gọi giao điểm của OM với (O) là I
Xét đường tròn (O), tiếp tuyến MA, MB có: MA cắt MB tại M
=> \(\widehat{IOB}=\widehat{IOC}=\dfrac{1}{2}\widehat{BOC}\) (t/c của 2 tiếp tuyến cắt nhau)
=> cung IB = cung IC
Mặt khác \(\widehat{BOC}\) là góc ở tâm và \(\widehat{BAC}\) là góc nội tiếp cùng chắn cung BC => \(\widehat{BAC}=\dfrac{1}{2}\widehat{BOC}\)
=> \(\widehat{BAC}=\widehat{IOC}\). Hay \(\widehat{BAC}=\widehat{MOC}\)
Ta có: \(\widehat{BAC}\) và \(\widehat{BFC}\) là các góc nội tiếp cùng chắn cung BC
=> \(\widehat{BAC}=\widehat{BFC}\)
=> \(\widehat{BFC}=\widehat{MOC}\)
d, Gọi giao điểm của OE và DF là K
Ta có: \(\widehat{OEM}=90^0\left(cmt\right)\) => \(KE\perp AD\)
Xét \(\Delta AKD\) có:
E là trung điểm của KD (gt)
\(KE\perp AD\left(gt\right)\)
=> \(\Delta AKD\) cân tại K => \(\widehat{KAD}=\widehat{KDA}\). Hay \(\widehat{BAD}=\widehat{FDA}\)
Xét đường tròn (O) có: \(\widehat{BAD}\) và \(\widehat{BFD}\) là các góc nội tiếp cùng chắn cung BD => \(\widehat{BAD}=\widehat{BFD}\)
=> \(\widehat{BFD}=\widehat{FDA}\)
Mà 2 góc này ở vị trí so le trong => BF // AD. Hay BF // AM
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao