Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có : CA vuông góc AB(gt) và HP vuông góc AB(gt) => CA //HP => góc PHA=góc HAQ(so le trong).
Xét tam giác vuông AHP và tam giác vuông HAQ có:
Cạnh HA chung
góc PHA=góc HAQ(cmt)
Do đó: tam giác AHP=tam giác HAQ(cạnh huyền-góc nhọc).
=> HP=AQ(hai cạnh tương ứng) và AP=HQ(hai cạnh tương ứng).
Ta có : PH=PD(gt) và PH=AQ(cmt) nên PD=AQ
QH=QE(gt) và HQ=AP(cmt) nên QE=AP
Xét hai tam giác vuông DPA và tam giác vuông AQE có:
PD=AQ(cmt)
QE=AP(cmt)
Do đó:tam giác DPA=tam giác AQE(hai cạnh góc vuông)
=>AD=AE(hai cạnh tương ứng)
hay A là trung điểm của DE>
b)Trong tam giác HDE có : P là trung điểm DH và Q là trung điểm HE => PQ là đường trung bình => PQ=1/2DE.
c)Tam giác HDE có PQ là đường trung bình => PQ=1/2DE=DA (1).
Trong tam giác ADH có AP là trung tuyến(PD=PH) đồng thời AP là đường cao=>Tam giác ADH cân=>AD=AH (2).
Từ (1) và (2), suy ra PQ=AH.
a: Xét ΔAHD có
AP là đường cao, là đường trung tuyến
nên ΔAHD cân tại A
mà AP là đường cao
nên AP là phân giác của góc HAD(1)
Xét ΔAHE có
AQ là đường cao, là đường trung tuyến
nên ΔAHE cân tại A
mà AQ là đường cao
nên AQ là phân giác của góc HAE(2)
Từ (1) và (2) suy ra góc DAE=2x90=180 độ
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
b: Xét ΔHED có Q,P lần lượt là trung điểm của HE,HD
nên ΔHED cân tại H
=>QP=1/2ED
c: Xét tứ giác APHQ có góc APH=góc AQH=góc PAQ=90 độ
nên APHQ là hình chữ nhật
=>AH=PQ
a: góc APH=góc AQH=góc PAQ=90 độ
=>APHQ là hình chữ nhật
=>PQ=AH
b: Xét ΔHED có HQ/HE=HP/HD
nên QP//ED và QP/ED=HQ/HE=1/21
=>PQ=1/2ED
1. qua de roi dung dinh li hinh chu nhat.
2.vi tam gic BDH vuong tai D co DM la duong trung tuyen nen DM=MN=BH/2
=>goc MDH = goc MHD(1)
tam gic DHE vuong tai H co HP la duong trung tuyen nen HP =DP=DE/2
=>goc HDP =goc DHP(2)
TU (1)(2) ma goc MHD+goc DHP=90
=.goc MDH +goc HDP=90=goc MDP
Tuong tu cm duoc goc NED=90
=>MDEN la hinh thanh vuong
3.dung dinh ly duong trung binh cua hinh thang
4.de dang cm duoc PN la duong trung binh tam giacHAC
=>PN //AC=>PN vuông góc với AB mà AH vuông góc với BC vá cắt PN tại P=>P la truc tam cua tam giac ABN
5.Ta co DM=BH/2
EN=HC/2
=>DM+EN=BC/2 (1)
Ta có S MNED = (MD+EN).DE/2 (2)
S ABC=AH.BC/2 (3)
AH=DE(4)
Tu (1)(2)(3)(4)=>S MNED=SABC/2
A B C H D E P Q
a) Xét tứ giác APHQ: ^PAQ=^APH=^AQH=900 => Tứ giác APHQ là hình chữ nhật
=> AP=HQ. Mà HQ=EQ => AP=EQ.
Ta có: AP vuông góc AC; EQ vuông góc AC => AP // EQ (Quan hệ song song vuông góc)
Xét tứ giác APQE: AP=EQ; AP // EQ => Tứ giác APQE là hình bình hành => PQ // AE (1)
Tương tự: Tứ giác AQPD là hình bình hành => PQ // AD (2)
Từ (1) và (2) => 2 điểm D;A;E thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).
b) Ta thấy điểm A thuộc DE, PQ // AD và PQ//AE nên PQ // DE (đpcm).
a)Ta có : CA vuông góc AB(gt) và HP vuông góc AB(gt) => CA //HP => góc PHA=góc HAQ(so le trong).
Xét tam giác vuông AHP và tam giác vuông HAQ có:
Cạnh HA chung
góc PHA=góc HAQ(cmt)
Do đó: tam giác AHP=tam giác HAQ(cạnh huyền-góc nhọc).
=> HP=AQ(hai cạnh tương ứng) và AP=HQ(hai cạnh tương ứng).
Ta có : PH=PD(gt) và PH=AQ(cmt) nên PD=AQ
QH=QE(gt) và HQ=AP(cmt) nên QE=AP
Xét hai tam giác vuông DPA và tam giác vuông AQE có:
PD=AQ(cmt)
QE=AP(cmt)
Do đó:tam giác DPA=tam giác AQE(hai cạnh góc vuông)
=>AD=AE(hai cạnh tương ứng)
hay A là trung điểm của DE>
b)Trong tam giác HDE có : P là trung điểm DH và Q là trung điểm HE => PQ là đường trung bình => PQ=1/2DE.
c)Tam giác HDE có PQ là đường trung bình => PQ=1/2DE=DA (1).
Trong tam giác ADH có AP là trung tuyến(PD=PH) đồng thời AP là đường cao=>Tam giác ADH cân=>AD=AH (2).
Từ (1) và (2), suy ra PQ=AH.
Hok tốt nhaaaa ~