K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2018

a)Ta có : CA vuông góc AB(gt) và HP vuông góc AB(gt) => CA //HP => góc PHA=góc HAQ(so le trong).

Xét tam giác vuông AHP và tam giác vuông HAQ có:

Cạnh HA chung

góc PHA=góc HAQ(cmt)

Do đó: tam giác AHP=tam giác HAQ(cạnh huyền-góc nhọc).

=> HP=AQ(hai cạnh tương ứng) và AP=HQ(hai cạnh tương ứng).

Ta có : PH=PD(gt) và PH=AQ(cmt) nên PD=AQ

           QH=QE(gt) và HQ=AP(cmt) nên QE=AP

Xét hai tam giác vuông DPA và tam giác vuông AQE có:

           PD=AQ(cmt)

           QE=AP(cmt)

Do đó:tam giác DPA=tam giác AQE(hai cạnh góc vuông)

=>AD=AE(hai cạnh tương ứng)

hay A là trung điểm của DE>

b)Trong tam giác HDE có : P là trung điểm DH và Q là trung điểm HE => PQ là đường trung bình => PQ=1/2DE.

c)Tam giác HDE có PQ là đường trung bình => PQ=1/2DE=DA (1).

Trong tam giác ADH có AP là trung tuyến(PD=PH) đồng thời AP là đường cao=>Tam giác ADH cân=>AD=AH (2).

Từ (1) và (2), suy ra PQ=AH.

27 tháng 8 2021

a)Ta có : CA vuông góc AB(gt) và HP vuông góc AB(gt) => CA //HP => góc PHA=góc HAQ(so le trong).

Xét tam giác vuông AHP và tam giác vuông HAQ có:

Cạnh HA chung

góc PHA=góc HAQ(cmt)

Do đó: tam giác AHP=tam giác HAQ(cạnh huyền-góc nhọc).

=> HP=AQ(hai cạnh tương ứng) và AP=HQ(hai cạnh tương ứng).

Ta có : PH=PD(gt) và PH=AQ(cmt) nên PD=AQ

           QH=QE(gt) và HQ=AP(cmt) nên QE=AP

Xét hai tam giác vuông DPA và tam giác vuông AQE có:

           PD=AQ(cmt)

           QE=AP(cmt)

Do đó:tam giác DPA=tam giác AQE(hai cạnh góc vuông)

=>AD=AE(hai cạnh tương ứng)

hay A là trung điểm của DE>

b)Trong tam giác HDE có : P là trung điểm DH và Q là trung điểm HE => PQ là đường trung bình => PQ=1/2DE.

c)Tam giác HDE có PQ là đường trung bình => PQ=1/2DE=DA (1).

Trong tam giác ADH có AP là trung tuyến(PD=PH) đồng thời AP là đường cao=>Tam giác ADH cân=>AD=AH (2).

Từ (1) và (2), suy ra PQ=AH.

Hok tốt nhaaaa ~

a: Xét ΔAHD có

AP là đường cao, là đường trung tuyến

nên ΔAHD cân tại A

mà AP là đường cao

nên AP là phân giác của góc HAD(1)

Xét ΔAHE có

AQ là đường cao, là đường trung tuyến

nên ΔAHE cân tại A

mà AQ là đường cao

nên AQ là phân giác của góc HAE(2)

Từ (1) và (2) suy ra góc DAE=2x90=180 độ

=>D,A,E thẳng hàng

mà AD=AE

nên A là trung điểm của DE

b: Xét ΔHED có Q,P lần lượt là trung điểm của HE,HD

nên ΔHED cân tại H

=>QP=1/2ED

c: Xét tứ giác APHQ có góc APH=góc AQH=góc PAQ=90 độ

nên APHQ là hình chữ nhật

=>AH=PQ

12 tháng 8 2018

bạn có bài giải chưa vậy

12 tháng 8 2018

Mình chưa

17 tháng 8 2019

Các bạn làm , vẽ hình rồi chụp nha cảm ơn ạ

a: Ta có: H và D đối xứng với nhau qua AB

nên AH=AD; BH=BD

=>ΔHAD cân tại A

=>AB là phân giác của góc HAD(1)

Ta có H và E đối xứngvới nhau qua AC

nên AH=AE; CH=CE

=>ΔAHE cân tại A

=>AC là phân giác của góc HAE(2)

Từ (1) và (2) suy ra góc DAE=2xgóc BAC=180 độ

=>D,A,E thẳng hàng

b: Xét ΔAHB và ΔADB có

AH=AD

BH=BD

AB chung

Do đó: ΔAHB=ΔADB

Suy ra: góc ADB=90 độ

=>BD vuông góc với DE(3)

Xét ΔAHC và ΔAEC có

AH=AE

HC=EC

AC chung

Do đó: ΔAHC=ΔAEC

Suy ra: góc AEC=90 độ

=>CE vuông góc với ED(4)

Từ (3) và (4) suy ra BDEC là hình thang vuông

c: ED=AE+AD
=AH+AH=2AH

d: Xét ΔDHE có 

HA là đường trung tuyến

HA=DE/2

Do đó: ΔDHE vuông tại H

22 tháng 8 2017

Gấp gáp chi em cuộc sống vẫn rực rỡ sắc màu

Chim vẫn reo ca và môi hôn đang đứng đợi

Hoa vẫn nở và xuân thì đương tới

Hãy trải lòng xao xuyến với tình yêu.

12 tháng 8 2018

bạn có bài giải chưa vậy