Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có : CA vuông góc AB(gt) và HP vuông góc AB(gt) => CA //HP => góc PHA=góc HAQ(so le trong).
Xét tam giác vuông AHP và tam giác vuông HAQ có:
Cạnh HA chung
góc PHA=góc HAQ(cmt)
Do đó: tam giác AHP=tam giác HAQ(cạnh huyền-góc nhọc).
=> HP=AQ(hai cạnh tương ứng) và AP=HQ(hai cạnh tương ứng).
Ta có : PH=PD(gt) và PH=AQ(cmt) nên PD=AQ
QH=QE(gt) và HQ=AP(cmt) nên QE=AP
Xét hai tam giác vuông DPA và tam giác vuông AQE có:
PD=AQ(cmt)
QE=AP(cmt)
Do đó:tam giác DPA=tam giác AQE(hai cạnh góc vuông)
=>AD=AE(hai cạnh tương ứng)
hay A là trung điểm của DE>
b)Trong tam giác HDE có : P là trung điểm DH và Q là trung điểm HE => PQ là đường trung bình => PQ=1/2DE.
c)Tam giác HDE có PQ là đường trung bình => PQ=1/2DE=DA (1).
Trong tam giác ADH có AP là trung tuyến(PD=PH) đồng thời AP là đường cao=>Tam giác ADH cân=>AD=AH (2).
Từ (1) và (2), suy ra PQ=AH.
a)Ta có : CA vuông góc AB(gt) và HP vuông góc AB(gt) => CA //HP => góc PHA=góc HAQ(so le trong).
Xét tam giác vuông AHP và tam giác vuông HAQ có:
Cạnh HA chung
góc PHA=góc HAQ(cmt)
Do đó: tam giác AHP=tam giác HAQ(cạnh huyền-góc nhọc).
=> HP=AQ(hai cạnh tương ứng) và AP=HQ(hai cạnh tương ứng).
Ta có : PH=PD(gt) và PH=AQ(cmt) nên PD=AQ
QH=QE(gt) và HQ=AP(cmt) nên QE=AP
Xét hai tam giác vuông DPA và tam giác vuông AQE có:
PD=AQ(cmt)
QE=AP(cmt)
Do đó:tam giác DPA=tam giác AQE(hai cạnh góc vuông)
=>AD=AE(hai cạnh tương ứng)
hay A là trung điểm của DE>
b)Trong tam giác HDE có : P là trung điểm DH và Q là trung điểm HE => PQ là đường trung bình => PQ=1/2DE.
c)Tam giác HDE có PQ là đường trung bình => PQ=1/2DE=DA (1).
Trong tam giác ADH có AP là trung tuyến(PD=PH) đồng thời AP là đường cao=>Tam giác ADH cân=>AD=AH (2).
Từ (1) và (2), suy ra PQ=AH.
Hok tốt nhaaaa ~
a: Xét ΔAHD có
AP là đường cao, là đường trung tuyến
nên ΔAHD cân tại A
mà AP là đường cao
nên AP là phân giác của góc HAD(1)
Xét ΔAHE có
AQ là đường cao, là đường trung tuyến
nên ΔAHE cân tại A
mà AQ là đường cao
nên AQ là phân giác của góc HAE(2)
Từ (1) và (2) suy ra góc DAE=2x90=180 độ
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
b: Xét ΔHED có Q,P lần lượt là trung điểm của HE,HD
nên ΔHED cân tại H
=>QP=1/2ED
c: Xét tứ giác APHQ có góc APH=góc AQH=góc PAQ=90 độ
nên APHQ là hình chữ nhật
=>AH=PQ
a: Ta có: H và D đối xứng với nhau qua AB
nên AH=AD; BH=BD
=>ΔHAD cân tại A
=>AB là phân giác của góc HAD(1)
Ta có H và E đối xứngvới nhau qua AC
nên AH=AE; CH=CE
=>ΔAHE cân tại A
=>AC là phân giác của góc HAE(2)
Từ (1) và (2) suy ra góc DAE=2xgóc BAC=180 độ
=>D,A,E thẳng hàng
b: Xét ΔAHB và ΔADB có
AH=AD
BH=BD
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: góc ADB=90 độ
=>BD vuông góc với DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
HC=EC
AC chung
Do đó: ΔAHC=ΔAEC
Suy ra: góc AEC=90 độ
=>CE vuông góc với ED(4)
Từ (3) và (4) suy ra BDEC là hình thang vuông
c: ED=AE+AD
=AH+AH=2AH
d: Xét ΔDHE có
HA là đường trung tuyến
HA=DE/2
Do đó: ΔDHE vuông tại H
Gấp gáp chi em cuộc sống vẫn rực rỡ sắc màu
Chim vẫn reo ca và môi hôn đang đứng đợi
Hoa vẫn nở và xuân thì đương tới
Hãy trải lòng xao xuyến với tình yêu.
a: góc APH=góc AQH=góc PAQ=90 độ
=>APHQ là hình chữ nhật
=>PQ=AH
b: Xét ΔHED có HQ/HE=HP/HD
nên QP//ED và QP/ED=HQ/HE=1/21
=>PQ=1/2ED