Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Tam giác ABC đồng dạng vs tam giác HBA (g.g) (1)
====> góc ( ACB ) = góc ( HAB )
====> góc ( KAH ) = góc ( KCA ) (do tính chất đường phân giác)
Mà: góc (KAH) + góc (KCA) = góc (HAB) = góc (BHA) - góc (ABH) (***) (tính chất của tam giác vuông)
Lại có: tam giác ABC đồng dạng vs tam giác HAC (g.g) (2)
Từ (1) và (2) ===> tam giác HBA cũng đồng dạng vs tam giác HAC
===============> góc (HBA) = góc (HAC) (*)
Vậy từ (*) và (***) =>>> góc (KAH) + góc (KCA) = góc (HAC)
Vậy có thể chứng minh rằng góc (AKC) vuông
hay AK vuông góc CK
ko nhớ đây là D hay B nữa
a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)
\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)
b)Ta có:
\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)
Lại có:
\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)
\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)
Suy ra:\(\widehat{ADC}=\widehat{DAC}\)
\(\Rightarrow\Delta ADC\)cân tại C
c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)
\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)
Mà \(\widehat{BAD}=\widehat{DAH}\)
\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)
\(\Rightarrow\)\(\Delta KAD\)cân tại K
d)Xét \(\Delta CDK-\Delta CAK\)
\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)
\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)
\(\Rightarrowđpcm\)
e)Xét\(\Delta AID-\Delta AHD\)
\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)
\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)
\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)
\(\Rightarrow DI//AC\)
a: Xét ΔCAM có CA=CM
nên ΔCAM cân tại C
=>\(\widehat{CAM}=\widehat{CMA}\)
b: \(\widehat{CAM}+\widehat{MAN}=90^0\)
=>\(\widehat{CMA}+\widehat{MAN}=90^0\)
c: \(\widehat{BAM}+\widehat{CAM}=90^0\)
\(\widehat{CMA}+\widehat{HAM}=90^0\)
DO đó: \(\widehat{BAM}=\widehat{HAM}\)
hay AM là tia phân giác của góc BAH
d: Xét ΔHAM và ΔNAM có
AH=AN
\(\widehat{HAM}=\widehat{NAM}\)
AM chung
DO đó: ΔHAM=ΔNAM
Suy ra: \(\widehat{AHM}=\widehat{ANM}=90^0\)
=>MN\(\perp\)AB
a/ tam giác BAH và tam giác CAH có
AB=AC ( tam giác ABC cân vì góc B = góc C)
góc BHA = góc CHA = 90 độ
góc B = góc C
=> tam giác BAH = tam giác CAH (CH - GN)
=>góc BAH = góc HAC
cho t.giác ABC vuông ở C, có \(\widehat{C}\)=60 độ là sao vậy bn,đã vuông thì pk = 90 độ chứ